INTRO TO SOFTWARE TESTING CHAPTER 7.3

graph Coverage from source code

Dr. Brittany Johnson-Matthews

(Dr. B for short)
https://go.gmu.edu/SWE637
Provided by Bob Kurtz

Graph Coverage

- Graph criteria are often applied to program source code
- The graph is generally the control flow graph (CFG)
- Node coverage requires execution of every statement
- Edge coverage requires execution of every branch
- Data flow coverage requires augmenting the CFG, where defs are variable assignments and uses are variable references

Control Flow Graphs

- A CFG models execution of a method by describing control flow structures
- A node contains a statement or sequence of statements such that if the first statement in the sequence is executed, all statements in the sequence are executed (a "basic block")
- An edge is a transfer of control (decision)
- CFGs may be annotated with extra information
- Variable defs
- Variable uses
- Source code

CFG Example: If

$$
\begin{aligned}
& \text { if }(x<y)\{ \\
& y=0 ; \\
& x=x+1 \\
& \} \\
& \text { else }\{ \\
& x=y
\end{aligned}
$$

$$
\text { if }(x<y)\{
$$

CFG Example: If

```
if (x < y) {
    y = 0;
    x = x + 1;
}
else {
    x = y;
}
```

 if (\(x<y\)) \{
 \(y=0 ;\)
 \(x=x+1 ;\)

CFG Example: If-Return

```
if (x < y) {
    return;
}
print (x);
return;
```


- Note that there is no edge from node 2 to node 3
- The return statements map to two distinct terminal nodes

```
x = 0;
while (x < y) {
    y = f (x, y);
    x = x + 1;
}
return (x);
```


- Loops may require dummy nodes to correctly model the control flow
- Dummy nodes do not represent statements or basic blocks
- Alternate option: annotate node (2) with "while $(x<y)$ " and mark branches "True" and "False"

CFG Example: For Loop

```
for (x=0; x<y; x++) {
    y = f (x, y);
}
return (x);
```


- For loops have additional implicit nodes for initialization and incrementing
- Increment node (4) could be combined with node (3), but is often left separate to indicate that (4) is part of the loop structure

CFG Example: Do Loop

```
x=0;
do {
        y = f (x, y);
    x = x + 1;
} while (x < y);
return (x);
```


CFG Example: Break and Continue

```
x=0;
while (x < y) {
    y = f(x, y);
    if (y == 0) {
        break;
    }
    else if (y < 0) {
        y = y * 2;
        continue;
    }
    x = x + 1;
}
return (x);
```



```
read (c);
switch (c) {
    case 'N`:
        z = 25;
        case 'Y':
            x = 50;
            break;
            default:
            x = 0;
            break;
}
print (x);
```



```
try
{
    s = br.readLine();
    if (s.length() > 96)
        throw new Exception
                ("too long");
    if (s.length() == 0)
        throw new Exception
                ("too short");
}
catch (IOException e) {
    e.printStackTrace();
}
catch (Exception e) {
    e.getMessage();
}
return (s);
```


CFG Example: computeStats

```
public static void computeStats (int[] numbers) {
    int length = numbers.length;
    double med, var, sd;
    double mean, sum, varsum;
    sum = 0;
    for (int i=0; i<length; i++) {
        sum += numbers[i];
    }
    med = numbers[length/2];
    mean = sum / (double) length;
    varsum = 0;
    for (int i=0; i<length; i++) {
        varsum = varsum + ((numbers[i] - mean)
            * (numbers[i] - mean));
    }
    var = varsum / (length - 1.0);
    sd = Math.sqrt(var);
    System.out.println("length:
    System.out.println("mean:
    System.out.println("median:
    + med);
    System.out.println("variance: " + var);
    System.out.println("std dev: " + sd);
}
```

```
public static void computeStats (int[] numbers) {
    int length = numbers.length;
    double med, var, sd;
    double mean, sum, varsum;
sum = 0;
    for (int i=0; i<length; i++) {
        sum += numbers[i];
    }
    med = numbers[length/2];
    mean = sum / (double) length;
    varsum = 0;
    for (int i=0; i<length; i++) {
        varsum = varsum + ((numbers[i] - mean)
            * (numbers[i] - mean));
    }
var = varsum / (length - 1.0);
sd = Math.sqrt(var);
System.out.println("length: " + length);
System.out.println("mean:
System.out.println("median:
+ med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);
}
```


CFG Example: computeStats

public static void computeStats (int[] numbers) \{ int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;
sum = 0;
for (int $i=0 ; i<l e n g t h ; i++)$ \{
sum += numbers[i];
\}

med $=$ numbers[length/2];
mean = sum / (double) length;
varsum = 0;
for (int i=0; i<length; i++) \{

* (numbers[i] - mean));
\}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);
System.out.println("length: " + length);
System. out.println("mean:
System. out.println("median:
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);
\}

CFG Example: computeStats

```
public static void computeStats (int[] numbers) {
```

 int length = numbers.length;
 double med, var, sd;
 double mean, sum, varsum;
 sum = 0;
 for (int \(i=0 ; i<l e n g t h ; i++)\) \{
 sum += numbers[i];
 \}
 med = numbers[length/2];
 mean = sum / (double) length;
 varsum = 0;
 for (int i=0; i<length; i++) \{
 varsum = varsum \(+((\) numbers[i] - mean \()\)
 * (numbers[i] - mean));
 \}
 var = varsum / (length - 1.0);
 sd = Math.sqrt(var);

System.out.println("length:
System. out.println("mean: System. out.println("median:
System.out.println("variance: " + var);
length)

+ mean) ;

System.out.println("std dev:

+ var);
\}
public static void computeStats (int[] numbers) \{ int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;
sum = 0;
for (int $i=0 ; i<l e n g t h ; i++$) \{ sum += numbers[i];
\}
med $=$ numbers[length/2];
mean = sum / (double) length;

```
varsum = 0;
    for (int i=0; i<length; i++) {
        varsum = varsum + ((numbers[i] - mean)
            * (numbers[i] - mean));
    }
    var = varsum / (length - 1.0);
    sd = Math.sqrt(var);
    System.out.println("length: " + length);
    System.out.println("mean:
    System.out.println("median:
    System.out.p
    Sysem.out.println("variance: " + var);
    System.out.println("std dev: " + sd);
}
```

```
public static void computeStats (int[] numbers) {
    int length = numbers.length;
    double med, var, sd;
    double mean, sum, varsum;
    sum = 0;
    for (int i=0; i<length; i++) {
        sum += numbers[i];
    }
    med = numbers[length/2];
    mean = sum / (double) length;
    varsum = 0;
    for (int i=0; i<length; i++) {
        varsum = varsum + ((numbers[i] - mean)
            * (numbers[i] - mean));
    }
    var = varsum / (length - 1.0);
    sd = Math.sqrt(var);
```



```
System.out.println("length:
System. out.println("mean:
System. out.println("median:
System.out.println("variance:
" + length);
System.out.println("std dev:
+ mean);
" + med);
+ var);
+ sd);
}
```


CFG Example: computeStats

public static void computeStats (int[] numbers) \{ int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;
sum $=0$;
for (int i=0; i<length; i++) \{
sum += numbers[i];
\}
med $=$ numbers[length/2];
mean = sum / (double) length;
varsum = 0;
for (int i=0; i<length; i++)
varsum $=$ varsum $+(($ numbers $[i]-$ mean $)$

* (numbers[i] - mean));
\}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);
System.out.println("length:
System. out.println("mean:
System.out.println("median:
" + length);

System. out.println("variance: " + var);
System.out.println("std dev:
\}
public static void computeStats (int[] numbers) \{ int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;
sum = 0;
for (int $i=0 ; i<l e n g t h ; i++)$ \{ sum += numbers[i];
\}
med $=$ numbers[length/2];
mean = sum / (double) length;
varsum = 0;
for (int i=0; i<length; i++) \{
varsum $=$ varsum + ((numbers[i] - mean)

* (numbers[i] - mean));
$\}$
var $=$ varsum / (length - 1.0);
sd $=$ Math. sart $($ var $) ;$
System.out.println("length:
System.out.println("length:
System.out.println("mean:
System.out.println("mean:
System.out.println("median:
System.out.println("median:
System.out.println("variance:
System.out.println("variance:
System.out.println("std dev:
System.out.println("std dev:
+ length);
+ length);
+ mean);
+ mean);
+ med);
+ med);
+ var);
+ var);
\}

TRs and Test Paths: EC

- Edge Coverage TRs
- [1,2], [2,3], [2,4], [3,2], [4,5], [5,6], [5,7], [6,5]
- Test paths

- Edge Coverage TRs
- $[1,2],[2,3],[2,4],[3,2]$, [4,5], [5,6], [5,7], [6,5]
- Test paths

- Edge Coverage TRs
- $[1,2],[2,3],[2,4],[3,2]$, [4,5], [5,6], [5,7], [6,5]
- Test paths
- [1,2,3

Pick an edge that increases coverage (tip: take the loop first to maximize the coverage from this test path)

- Edge Coverage TRs
- $[1,2],[2,3],[2,4],[3,2]$, [4,5], [5,6], [5,7], [6,5]
- Test paths

TRs and Test Paths: EC

- Edge Coverage TRs
- $[1,2],[2,3],[2,4],[3,2]$, [4,5], [5,6], [5,7], [6,5]
- Test paths

$$
\text { - }[1,2,3,2,4
$$

TRs and Test Paths: EC

- Edge Coverage TRs
$-[1,2],[2,3],[2,4],[3,2]$,
$[4,5],[5,6],[5,7],[6,5]$
- Test paths

$$
\circ[1,2,3,2,4,5
$$

TRs and Test Paths: EC

- Edge Coverage TRs
- $[1,2],[2,3],[2,4],[3,2]$,
[4,5], [5,6], [5,7], [6,5]
- Test paths
。 [1,2,3,2,4,5,6

TRs and Test Paths: EC

- Edge Coverage TRs
- $[1,2],[2,3],[2,4],[3,2]$, $[4,5],[5,6],[5,7],[6,5]$
- Test paths
- [1,2,3,2,4,5,6,5

TRs and Test Paths: EC

- Edge Coverage TRs

$$
\begin{gathered}
\cdot[1,2],[2,3],[2,4],[3,2], \\
\\
{[4,5],[5,6],[5,7],[6,5]}
\end{gathered}
$$

- Test paths

$$
\circ[1,2,3,2,4,5,6,5,7]
$$

- Edge Coverage TRs

$$
\begin{gathered}
\circ[1,2],[2,3],[2,4],[3,2], \\
{[4,5],[5,6],[5,7],[6,5]}
\end{gathered}
$$

- Test paths
- [1,2,3,2,4,5,6,5,7]

Edge coverage is satisfied with I test path

TRs and Test Paths: EPC

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4], [4,5,6], [4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths

TRs and Test Paths: EPC

- Edge-Pair TRs

$$
\begin{aligned}
& {\left[\begin{array}{l}
{[1,2,3],[1,2,4],[2,3,2],[2,4,5]} \\
{[3,2,3],[3,2,4]} \\
{[4,5,6],[4,5,7],[5,6,5],[6,5,6]} \\
{[6,5,7]}
\end{array}\right.}
\end{aligned}
$$

- Test paths
- [1,2,3,2,3

- Edge-Pair TRs
$\circ[1,2,3],[1,2,4],[2,3,2],[2,4,5]$
$[3,2,3],[3,2,4]$
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$
$[6,5,7]$
- Test paths
- [1,2,3,2,3,2

It's not always possible to
increase coverage with every selected edge

TRs and Test Paths: EPC

- Edge-Pair TRs

$$
\begin{aligned}
& -[1,2,3],[1,2,4],[2,3,2],[2,4,5] \\
& {[3,2,3],[3,2,4]} \\
& {[4,5,6],[4,5,7],[5,6,5],[6,5,6]} \\
& {[6,5,7]}
\end{aligned}
$$

- Test paths

$$
[1,2,3,2,3,2,4
$$

TRs and Test Paths: EPC

- Edge-Pair TRs

$$
\begin{aligned}
& \circ[1,2,3],[1,2,4],[2,3,2],[2,4,5], \\
& {[3,2,3],[3,2,4]} \\
& {[4,5,6],[4,5,7],[5,6,5],[6,5,6]} \\
& {[6,5,7]}
\end{aligned}
$$

- Test paths

$$
[1,2,3,2,3,2,4,5
$$

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$,
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths

$$
[1,2,3,2,3,2,4,5,6
$$

TRs and Test Paths: EPC

U N I V E R S ITTY

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths

$$
[1,2,3,2,3,2,4,5,6,5
$$

TRs and Test Paths: EPC

UNIVERSITY

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths

$$
[1,2,3,2,3,2,4,5,6,5,6
$$

TRs and Test Paths: EPC

UNIVERSITY

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths

$$
[1,2,3,2,3,2,4,5,6,5,6,5
$$

TRs and Test Paths: EPC

UNIVERSITY

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths

$$
[1,2,3,2,3,2,4,5,6,5,6,5,7]
$$

- Edge-Pair TRs

$$
\begin{aligned}
& -[1,2,3],[1,2,4],[2,3,2],[2,4,5], \\
& {[3,2,3],[3,2,4],} \\
& {[4,5,6],[4,5,7],[5,6,5],[6,5,6],} \\
& {[6,5,7]}
\end{aligned}
$$

- Test paths

TRs and Test Paths: EPC

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths
[1,2,3,2,3,2,4,5,6,5,6,5,7]
[1,2,4

TRs and Test Paths: EPC

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, $[3,2,3],[3,2,4]$,
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths

$$
\begin{aligned}
& {[1,2,3,2,3,2,4,5,6,5,6,5,7]} \\
& {[1,2,4,5}
\end{aligned}
$$

TRs and Test Paths: EPC

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, $[3,2,3],[3,2,4]$,
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths

$$
\begin{aligned}
& {[1,2,3,2,3,2,4,5,6,5,6,5,7]} \\
& {[1,2,4,5,7]}
\end{aligned}
$$

- Edge-Pair TRs
- $[1,2,3],[1,2,4],[2,3,2],[2,4,5]$, [3,2,3], [3,2,4],
$[4,5,6],[4,5,7],[5,6,5],[6,5,6]$, [6,5,7]
- Test paths
- [1,2,3,2,3,2,4,5,6,5,6,5,7]
[1,2,4,5,7]

Edge-pair coverage is satisfied with 2 test paths

TRs and Test Paths: PPC

- Prime Path TRs
- $[1,2,3],[1,2,4,5,6]$, [1,2,4,5,7], [2,3,2], [3,2,3], [3,2,4,5,6], [3,2,4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths

- Prime Path TRs
- [1,2,3], [1,2,4,5,6], [1,2,4,5,7], [2,3,2], [3,2,3], [3,2,4,5,6], [3,2,4,5,7], [5,6,5], [6,5,6], [6,5,7]
- Test paths
[1,2,3,2,3,2,4,5,6,5,6,5,7]

Tip: take a "greedy
algorithm" approach and try to maximize the coverage of each test path

- Prime Path TRs

$$
\begin{aligned}
& \circ[1,2,3],[1,2,4,5,6], \\
& {[1,2,4,5,7],[2,3,2],[3,2,3]} \\
& {[3,2,4,5,6],[3,2,4,5,7],[5,6,5]} \\
& {[6,5,6],[6,5,7]}
\end{aligned}
$$

- Test paths

[1,2,3,2,3,2,4,5,6,5,6,5,7]
 [1,2,4,5,7]

Add additional test paths to
capture the remainingTRs

TRs and Test Paths: PPC

- Prime Path TRs

$$
\begin{aligned}
& \circ[1,2,3],[1,2,4,5,6], \\
& {[1,2,4,5,7],[2,3,2],[3,2,3]} \\
& {[3,2,4,5,6],[3,2,4,5,7],[5,6,5]} \\
& {[6,5,6],[6,5,7]}
\end{aligned}
$$

- Test paths

$$
\begin{aligned}
& {[1,2,3,2,3,2,4,5,6,5,6,5,7]} \\
& {[1,2,4,5,7]} \\
& {[1,2,4,5,6,5,7]}
\end{aligned}
$$

TRs and Test Paths: PPC

UNIVERSITY

- Prime Path TRs

$$
\begin{aligned}
& {[1,2,3],[1,2,4,5,6],} \\
& {[1,2,4,5,7],[2,3,2],[3,2,3],} \\
& {[3,2,4,5,6],[3,2,4,5,7],[5,6,5],} \\
& {[6,5,6],[6,5,7]}
\end{aligned}
$$

- Test paths

$$
\begin{aligned}
& {[1,2,3,2,3,2,4,5,6,5,6,5,7]} \\
& {[1,2,4,5,7]} \\
& {[1,2,4,5,6,5,7]} \\
& {[1,2,3,2,4,5,7]}
\end{aligned}
$$

TRs and Test Paths: PPC

- Prime Path TRs

$$
\begin{aligned}
& {[1,2,3],[1,2,4,5,6],} \\
& {[1,2,4,5,7],[2,3,2],[3,2,3],} \\
& {[3,2,4,5,6],[3,2,4,5,7],[5,6,5],} \\
& {[6,5,6],[6,5,7]}
\end{aligned}
$$

- Test paths

$$
\begin{aligned}
& {[1,2,3,2,3,2,4,5,6,5,6,5,7]} \\
& {[1,2,4,5,7]} \\
& {[1,2,4,5,6,5,7]} \\
& {[1,2,3,2,4,5,7]}
\end{aligned}
$$

Data Flow Coverage for Source

- Def: a location where a value is stored into memory
- Variable appears on the left side of an assignment (e.g. x=44)
- Variable is an actual parameter in a call and the method changes its value
- Variable is a formal parameter of a method (implicit def when the method is called)
- Use: a location where a variable is accessed
- Variable appears on the right side of an assignment
- Variable appears in a conditional test
- Variable is an actual parameter in a call
- Variable is an output of the program
- Variable is used in a return statement

Data Flow Definitions

- DU-pair: a related def and use, where the use can be reached from the def
- The pair does not need to be def-clear
- Def-clear: a path from a def to a use is def-clear if there are no redefinitions of the variable along the path
- DU-path: a simple path from a def to a use that is defclear
- A def and use are a DU-pair only if:
- The def comes after the use within the node, and the node is in a loop
- A def and use are not a DUpair if:
- The use comes after the def, or...
- The def comes after the use, but the node is not in a loop

Collaborative Example

public static void computeStats (int[] numbers) \{ int length = numbers.length; double med, var, sd; double mean, sum, varsum;

```
sum = 0;
    for (int i=0; i<length; i++) {
    sum += numbers[i];
    med = numbers[length/2];
    mean = sum / (double) length;
```

 varsum = 0;
 for (int i=0; i<length; i++).
varsum $=$ varsum + ((numbers[i] - mean)
* (numbers[i] - mean));
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

```
System.out.println("length:
System.out.println("mean:
length);
+ mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);
}
```


Def/Use Tables for computeStats

Node	Defs	Uses	Edge	Uses
1				$(1,2)$
2			$(2,3)$	
3			$(2,4)$	
4			$(3,2)$	
5			$(4,5)$	
6			$(5,6)$	
7			$(5,7)$	
			$(6,5)$	

Node	Defs	Uses
1		

Node	Defs	Uses
1	\{numbers, sum, length, $i\}$	

Node	Defs	Uses
2		

Node	Defs	Uses
2	--	--

Node	Defs	Uses
3		

Node	Defs	
3	$\{$ sum, $i\}$	Uses
3	sum, i, numbers $\}$	

Node	Defs	Uses
4		

Node	Defs	Uses
4	$\{$ med, mean, varsum, i2 \}	\{numbers, length, sum \}

Node	Defs	Uses
5		

Node	Defs	Uses
5	--	--

Node	Defs	Uses
6		

Node	Defs	Uses
6	\{varsum, i2 \}	\{varsum, numbers, i2, mean $\}$

Node	Defs	Uses
7		

Node	Defs	Uses
7	$\{$ var, sd $\}$	\{varsum, length, var, mean, med, sd $\}$

Edge	Uses
$(1,2)$	

Edge	Uses
$(1,2)$	--

Edge	Uses
$(2,3)$	

Edge	Uses
$(2,3)$	$\{$ i, length $\}$

Edge	Uses
$(2,4)$	

Uses for Edge (2,4)

Edge	Uses
$(2,4)$	$\{\mathrm{i}$, length $\}$

Edge Uses
$(3,2)$

Edge	Uses
$(3,2)$	--

Edge	Uses
$(4,5)$	

Edge	Uses
$(4,5)$	--

Edge	Uses
$(5,6)$	

Edge	Uses
$(5,6)$	$\{i 2$, length $\}$

Edge	Uses
$(5,7)$	

Edge	Uses
$(5,7)$	$\{i 2$, length $\}$

Edge	Uses
$(6,5)$	

Edge	Uses
$(6,5)$	--

Def/Use Tables for computeStats

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{ numbers \}	$(1,2)$	--
			$(2,3)$	\{ i, length \}
2	--	\{sum, i, ${ }^{--}$	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i , numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--	--	$(5,6)$	\{ i2, length \}
6	\{ varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(5,7)$	\{ i2, length \}
			$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

All-Defs Coverage

- The first (and simplest) data flow coverage criterion requires coverage of at least one path from each def to at least one use of that def
\qquad
- A more complete data flow coverage criterion requires that there is coverage of at least one path from each def to every use of that def

[^0]
All-DU-Paths Coverage

- An even more complete data flow coverage criterion requires that there is coverage of every path from each def to every use of that def

```
읕 All-DU-Paths Coverage (ADUPC) - for each set \(S=d u\left(n_{j}, n_{j}, v\right), T R\) contains every path \(d\) in \(S\).
```


DU-Pairs for computeStats

Variable	
numbers	
length	
med	
var	
sd	
mean	
sum	
varsum	
i	

DU-Pairs for numbers

Node	Defs	Uses	Edge	Uses
1	\{numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{ i , length \}
2	--	[sum, -- ${ }^{--}$	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum \}	$(4,5)$	[i2, --
5	--	,	$(5,6)$	\{ i2, length \}
6	\{ varsum, i2 \}		$(5,7)$	\{ i2, length \}
6	\{varsum, 2 \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
numbers	

DU-Pairs for numbers

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum $\}$	$(4,5)$	[i2, --
5	--	--	$(5,6)$	\{ i2, length \}
	($(5,7)$	\{i2, length \}
6	\{ varsum, i2 \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
numbers	$(1,3),(1,4),(1,6)$

DU-Pairs for length

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	[sum, i, --	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum $\}$	$(4,5)$	\{i2, --
5	--	,	$(5,6)$	\{i2, length \}
6	\{ varsum, i2 \}		$(5,7)$	\{i2, length \}
	\{varsum, 2 \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
length	

DU-Pairs for length

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{ numbers \}	$(1,2)$	--
			$(2,3)$	\{ i, length \}
2	--	--	$(2,4)$	\{ i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{ med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	[i2,--
5	--	sum	$(5,6)$	\{ i2, length \}
6	\{ varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(5,7)$	\{ i2, length \}
			$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
length	$(1,(2,3)),(1,(2,4)),(1,4),(1,(5,6)),(1,(5,7)),(1,7)$

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--	--	$(5,6)$	\{ i2, length \}
5	\{varsum, i2 \}		$(5,7)$	\{i2, length \}
	\{varsum, 2 \}	$\text { i2, mean \} }$	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
med	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{ i, length \}
2	--	\{sum, --	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum \}	$(4,5)$	[i2, --
5	--	--	$(5,6)$	\{ i 2 , length $\}$
6	\{ varsum, i2 \}	\{ varsum, numbers,	$(5,7)$	\{ i2, length \}
		$\text { i2, mean \} }$	$(6,5)$	--
7	\{ var, sd \}	$\{$ varsum, length, var, mean, med, sd \}		

Variable	
med	$(4,7)$

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	---	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum \}	$(4,5)$	- --
5	--	-	$(5,6)$	\{ i2, length \}
6			$(5,7)$	\{i2, length \}
6	\{ varsum, 12 \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
var	

Node	Defs	Uses	Edge	Uses
1	\{numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum $\}$	$(4,5)$	[i2, --
5	varsum, 2 \}	sum	$(5,6)$	\{i2, length \}
			$(5,7)$	\{i2, length \}
6	\{ varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	
var	$(7,7)$

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{ numbers \}	$(1,2)$	--
			$(2,3)$	\{ i, length \}
2	--	--	$(2,4)$	\{ i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{ med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	[i2,--
5	--	sum	$(5,6)$	\{ i2, length \}
6	\{ varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(5,7)$	\{ i2, length \}
			$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
sd	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	varsum, 12 \}		$(5,6)$	\{ i2, length \}
			$(5,7)$	\{i2, length \}
6	\{varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	
sd	$(7,7)$

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{ i , length \}
2	--	\{sum, -- ${ }^{--}$	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--)	$(5,6)$	\{i2, length \}
6	\{ varsum,		$(5,7)$	\{i2, length \}
		i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
mean	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{ i , length \}
2	--	\{sum, -- ${ }^{--}$	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--)	$(5,6)$	\{i2, length \}
6	\{ varsum,		$(5,7)$	\{i2, length \}
		i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
mean	$(4,6),(4,7)$

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	---	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum \}	$(4,5)$	- --
5	--	-	$(5,6)$	\{ i2, length \}
6	\{varsum, i2 \}		$(5,7)$	\{ i2, length \}
	\{varsum, 12 \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
sum	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	---	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum \}	$(4,5)$	- --
5	--	-	$(5,6)$	\{ i2, length \}
6	\{varsum, i2 \}		$(5,7)$	\{ i2, length \}
	\{varsum, 12 \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	
sum	$(1,3),(1,4),(3,3),(3,4)$

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	\{sum, -- ${ }^{--}$	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--)	$(5,6)$	\{i2, length \}
6	\{varsum, i2 \}		$(5,7)$	\{i2, length \}
	\{varsum, ${ }^{\text {a }}$ \}	i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
varsum	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i\}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	[i2, --
5	--	,	$(5,6)$	\{ i2, length \}
6	\{varsum, i2 \}		$(5,7)$	\{i2, length \}
		i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
varsum	$(4,6),(4,7),(6,6),(6,7)$

DU-Pairs for i

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--		$(5,6)$	\{ i2, length \}
			$(5,7)$	\{i2, length \}
6	\{varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
i	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	---	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum $\}$	$(4,5)$	- ${ }^{--}$
5	--	-	$(5,6)$	\{ i2, length \}
6	\{varsum, i2 \}		$(5,7)$	\{i2, length \}
	\{ varsum, 2 \}	$\text { i2, mean \} }$	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
\mathbf{i}	$(1,(2,3)),(1,(2,4)),(1,3),(3,(2,3)),(3,(2,4)),(3,3)$

DU-Pairs for i

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	--	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{ sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{ numbers, length, sum \}	$(4,5)$	--
5	--		$(5,6)$	\{ i2, length \}
			$(5,7)$	\{i2, length \}
6	\{varsum, i2 \}	\{ varsum, numbers, i2, mean \}	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
i2	

Node	Defs	Uses	Edge	Uses
1	\{ numbers, sum, length, i \}	\{numbers \}	$(1,2)$	--
			$(2,3)$	\{i, length \}
2	--	---	$(2,4)$	\{i, length \}
3	\{sum, i \}	\{sum, i, numbers \}	$(3,2)$	--
4	\{med, mean, varsum, i2 \}	\{numbers, length, sum $\}$	$(4,5)$	- ${ }^{--}$
5	--	-	$(5,6)$	\{ i2, length \}
6	\{varsum, i2 \}		$(5,7)$	\{i2, length \}
	\{ varsum, 2 \}	$\text { i2, mean \} }$	$(6,5)$	--
7	\{ var, sd \}	\{ varsum, length, var, mean, med, sd \}		

Variable	DU-Pairs
i 2	$(4,(5,6)),(4,(5,7)),(4,6),(6,(5,6)),(6,(5,7)),(6,6)$

DU-Pairs for computeStats

Variable	DU-Pairs
numbers	$(1,3),(1,4),(1,6)$
length	$(1,(2,3)),(1,(2,4)),(1,4),(1,(5,6)),(1,(5,7)),(1,7)$
med	$(4,7)$
var	$(7,7)$
sd	$(7,7)$
mean	$(4,6),(4,7)$
sum	$(1,3),(1,4),(3,3),(3,4)$
varsum	$(4,6),(4,7),(6,6),(6,7)$
i	$(1,(2,3)),(1,(2,4)),(1,3),(3,(2,3)),(3,(2,4)),(3,3)$
i2	$(4,(5,6)),(4,(5,7)),(4,6),(6,(5,6)),(6,(5,7)),(6,6)$

DU-Paths for computeStats

Variable	DU-Pairs	DU-Paths
numbers	$(1,3),(1,4),(1,6)$	
length	$\begin{aligned} & (1,(2,3)), \\ & (1,(2,4)),(1,4), \\ & (1,(5,6)), \\ & (1,(5,7)),(1,7) \end{aligned}$	
med	$(4,7)$	
mean	$(4,6),(4,7)$	
sum	$\begin{aligned} & (1,3),(1,4),(3,3), \\ & (3,4) \end{aligned}$	
varsum	$\begin{aligned} & (4,6),(4,7),(6,6), \\ & (6,7) \end{aligned}$	
i	$\begin{aligned} & (1,(2,3)), \\ & (1,(2,4)),(1,3), \\ & (3,(2,3)), \\ & (3,(2,4)),(3,3) \end{aligned}$	
$i 2$	$\begin{aligned} & (4,(5,6)), \\ & (4,(5,7)),(4,6), \\ & (6,(5,6)), \\ & (6,(5,7)),(6,6) \end{aligned}$	

DU-Paths for numbers

Variable	DU-Pairs	
numbers	$(1,3)$	
	$(1,4)$	
	$(1,6)$	

DU-Paths for numbers

Variable	DU-Pairs	
numbers	$(1,3)$	$[1,2,3]$
	$(1,4)$	
	$(1,6)$	

DU-Paths for numbers

Variable	DU-Pairs	
numbers	$(1,3)$	$[1,2,3]$
	$(1,4)$	$[1,2,4]$
	$(1,6)$	

DU-Paths for numbers

Variable	DU-Pairs	
numbers	$(1,3)$	$[1,2,3]$
	$(1,4)$	$[1,2,4]$
	$(1,6)$	$[1,2,4,5,6]$

Variable	DU-Pairs	
length	$(1,(2,3))$	
	$(1,(2,4))$	
	$(1,4)$	
	$(1,(5,6))$	
	$(1,(5,7))$	
	$(1,7)$	

Variable	DU-Pairs	
length	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	
	$(1,4)$	
	$(1,(5,6))$	
	$(1,(5,7))$	
	$(1,7)$	

Variable	DU-Pairs					
length					$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$				
	$(1,4)$					
	$(1,(5,6))$					
	$(1,(5,7))$					
	$(1,7)$					

Variable	DU-Pairs					
length					$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$				
	$(1,4)$	$[1,2,4]$				
	$(1,(5,6))$					
	$(1,(5,7))$					
	$(1,7)$					

Variable	DU-Pairs					
length					$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$				
	$(1,4)$	$[1,2,4]$				
	$(1,(5,6))$	$[1,2,4,5,6]$				
	$(1,(5,7))$					
	$(1,7)$					

Variable	DU-Pairs					
length					$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$				
	$(1,4)$	$[1,2,4]$				
	$(1,(5,6))$	$[1,2,4,5,6]$				
	$(1,(5,7))$	$[1,2,4,5,7]$				
	$(1,7)$					

Variable	DU-Pairs	
length	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,4)$	$[1,2,4]$
	$(1,(5,6))$	$[1,2,4,5,6]$
	$(1,(5,7))$	$[1,2,4,5,7]$
	$(1,7)$	$[1,2,4,5,7]$

Variable	DU-Pairs	
med	$(4,7)$	$[4,5,7]$

Variable	DU-Pairs	
sum	$(1,3)$	$[1,2,3]$
	$(1,4)$	$[1,2,4]$
	$(3,3)$	$[3,2,3]$
	$(3,4)$	

DU-Paths for varsum

Variable	DU-Pairs	
varsum	$(4,6)$	
	$(4,7)$	
	$(6,6)$	
	$(6,7)$	

DU-Paths for varsum

Variable	DU-Pairs	
varsum	$(4,6)$	$[4,5,6]$
	$(4,7)$	
	$(6,6)$	
	$(6,7)$	

DU-Paths for varsum

Variable	DU-Pairs	
varsum	$(4,6)$	$[4,5,6]$
	$(4,7)$	$[4,5,7]$
	$(6,6)$	
	$(6,7)$	

DU-Paths for varsum

Variable	DU-Pairs	
varsum	$(4,6)$	$[4,5,6]$
	$(4,7)$	$[4,5,7]$
	$(6,6)$	$[6,5,6]$
	$(6,7)$	

DU-Paths for varsum

Variable	DU-Pairs	
varsum	$(4,6)$	$[4,5,6]$
	$(4,7)$	$[4,5,7]$
	$(6,6)$	$[6,5,6]$
	$(6,7)$	$[6,5,7]$

Variable	DU-Pairs	
i	$(1,(2,3))$	
	$(1,(2,4))$	
	$(1,3)$	
	$(3,(2,3))$	
	$(3,(2,4))$	
	$(3,3)$	

DU-Paths for i

Variable	DU-Pairs	
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	
	$(1,3)$	
	$(3,(2,3))$	
	$(3,(2,4))$	
	$(3,3)$	

Variable	DU-Pairs	
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,3)$	
	$(3,(2,3))$	
	$(3,(2,4))$	
	$(3,3)$	

Variable	DU-Pairs	
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,3)$	$[1,2,3]$
	$(3,(2,3))$	
	$(3,(2,4))$	
	$(3,3)$	

Variable	DU-Pairs	
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,3)$	$[1,2,3]$
	$(3,(2,3))$	$[3,2,3]$
	$(3,(2,4))$	
	$(3,3)$	

Variable	DU-Pairs	
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,3)$	$[1,2,3]$
	$(3,(2,3))$	$[3,2,3]$
	$(3,(2,4))$	$[3,2,4]$
	$(3,3)$	

Variable	DU-Pairs	
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,3)$	$[1,2,3]$
	$(3,(2,3))$	$[3,2,3]$
	$(3,(2,4))$	$[3,2,4]$
	$(3,3)$	$[3,2,3]$

Variable	DU-Pairs	
i2	$(4,(5,6))$	
	$(4,(5,7))$	
	$(4,6)$	
	$(6,(5,6))$	
	$(6,(5,7))$	
	$(6,6)$	

Variable	DU-Pairs	
i2	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	
	$(4,6)$	
	$(6,(5,6))$	
	$(6,(5,7))$	
	$(6,6)$	

Variable	DU-Pairs	
i2	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	$[4,5,7]$
	$(4,6)$	
	$(6,(5,6))$	
	$(6,(5,7))$	
	$(6,6)$	

Variable	DU-Pairs	
i2	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	$[4,5,7]$
	$(4,6)$	$[4,5,6]$
	$(6,(5,6))$	
	$(6,(5,7))$	
	$(6,6)$	

Variable	DU-Pairs	
i2	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	$[4,5,7]$
	$(4,6)$	$[4,5,6]$
	$(6,(5,6))$	$[6,5,6]$
	$(6,(5,7))$	
	$(6,6)$	

Variable	DU-Pairs	
i2	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	$[4,5,7]$
	$(4,6)$	$[4,5,6]$
	$(6,(5,6))$	$[6,5,6]$
	$(6,(5,7))$	$[6,5,7]$
	$(6,6)$	

Variable	DU-Pairs	
i2	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	$[4,5,7]$
	$(4,6)$	$[4,5,6]$
	$(6,(5,6))$	$[6,5,6]$
	$(6,(5,7))$	$[6,5,7]$
	$(6,6)$	$[6,5,6]$

DU-Paths for computeStats

Variable	DU-Pairs	DU-Paths
numbers	$(1,3)$	$[1,2,3]$
	$(1,4)$	$[1,2,4]$
	$(1,6)$	$[1,2,4,5,6]$
length	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,4)$	$[1,2,4]$
	$(1,(5,6))$	$[1,2,4,5,6]$
	$(1,(5,7))$	$[1,2,4,5,7]$
med	$(1,7)$	$[1,2,4,5,7]$
	$(4,7)$	$[4,5,7]$
sd	$(7,7)$	--
mean	$(7,7)$	--
	$(4,6)$	$[4,5,6]$

Variable	DU-Pairs	DU-Paths
sum	$(1,3)$	$[1,2,3]$
	$(1,4)$	$[1,2,4]$
	$(3,3)$	$[3,2,3]$
	$(3,4)$	$[3,2,4]$
varsum	$(4,6)$	$[4,5,6]$
	$(4,7)$	$[4,5,7]$
	$(6,6)$	$[6,5,6]$
	$(6,7)$	$[6,5,7]$
i	$(1,(2,3))$	$[1,2,3]$
	$(1,(2,4))$	$[1,2,4]$
	$(1,3)$	$[1,2,3]$
	$(3,(2,3))$	$[3,2,3]$
	$(3,(2,4))$	$[3,2,4]$
	$(3,3)$	$[3,2,3]$
	$(4,(5,6))$	$[4,5,6]$
	$(4,(5,7))$	$[4,5,7]$
	$(4,6)$	$[4,5,6]$
	$(6,(5,6))$	$[6,5,6]$
	$(6,(5,7))$	$[6,5,7]$
	$(6,6)$	$[6,5,6]$

Unique DU-Paths

- 32 DU-Paths, but only 10 are unique
- [1,2,3]
- [1,2,4]

。 [1,2,4,5,6]
3 don't execute a loop

- [1,2,4,5,7]
- [4,5,7]

5 execute a loop at least once

- [4,5,6]

2 execute a loop at least twice

- [3,2,3] \square
[3,2,4]
[6,5,6]
[6,5,7]

All-Defs Coverage

All-Uses Coverage

Variable	DU-Pairs	DU-Paths	Variable	DU-Pairs	DU-Paths
numbers	$(1,3)$	[1,2,3]	sum	$(1,3)$	[1,2,3]
	$(1,4)$	[1,2,4]		$(1,4)$	[1,2,4]
	$(1,6)$	[1,2,4,5,6]		$(3,3)$	[3,2,3]
length	(1,(2,3))	[1,2,3]		$(3,4)$	[3,2,4]
	(1,(2,4))	[1,2,4]	varsum	$(4,6)$	[4,5,6]
	$(1,4)$	[1,2,4]		$(4,7)$	[4,5,7]
	(1,(5,6))	[1,2,4,5,6]		$(6,6)$	[6,5,6]
	$\begin{aligned} & (1,(5,7)) \\ & (1,7) \end{aligned}$	[1,2,4,5,7]		$(6,7)$	[6,5,7]
		[1,2,4,5,7]	i	(1,(2,3))	[1,2,3]
med	$(4,7)$	[4,5,7]		(1,(2,4))	[1,2,4]
				$(1,3)$	[1,2,3]
var	$(7,7)$	--		($3,(2,3)$)	[3,2,3]
sd	$(7,7)$	--		$\begin{aligned} & (3,(2,4)) \\ & (3,3) \end{aligned}$	$\begin{aligned} & {[3,2,4]} \\ & {[3,2,3]} \end{aligned}$
mean	$(4,6)$	[4,5,6]	i2	(4,(5,6))	[4,5,6]
	$(4,7)$	[4,5,7]		(4,(5,7))	[4,5,7]
For All-Uses coverage, we must cover at least one DU-path from each def to each use (same as all-DU-paths in this case because there are no multiple				$(4,6)$	[4,5,6]
				$(6,(5,6))$	[6,5,6]
				(6,(5,7))	[6,5,7]
				$(6,6)$	[6,5,6]

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	Test Input numbers=\{?\}
$[1,2,3]$		
$[1,2,4]$		
$[1,2,4,5,6]$		
$[1,2,4,5,7]$		
$[4,5,7]$		
$[4,5,6]$		
$[3,2,3]$		
$[3,2,4]$		
$[6,5,6]$		
$[6,5,7]$		

DU-Path	Test Path	Test Input numbers=\{?\}
$[1,2,3]$	$[1,2,3,2,4,5,7]$	INFEASIBLE

Test Paths and Test Inputs

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	Test Input numberss=\{?\}	
$[1,2,3]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	
$[1,2,4]$			
$[1,2,4,5,6]$			
$[1,2,4,5,7]$			
$[4,5,7]$			
$[4,5,6]$			
$[3,2,3]$			
$[3,2,4]$			
$[6,5,6]$			
$[6,5,7]$			

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	$\begin{gathered} \text { Test Input } \\ \text { numbers=\{?\} } \end{gathered}$
[1,2,3]	[1,2,3,2,4,5,6,5,7]	\{ 1 \}
[1,2,4]		
[1,2,4,5,6]	This test path satisfie other DU-paths too	
[1,2,4,5,7]		
[4,5,7]		
[4,5,6]	[1,2,3,2,4,5,6,5,7]	\{ 1 \}
[3,2,3]		
[3,2,4]	[1,2,3,2,4,5,6,5,7]	\{ 1 \}
[6,5,6]		
[6,5,7]	[1,2,3,2,4, 5,6,5,7]	\{ 1 \}

Test Paths and Test Inputs

DU-Path	Test Path	Test Input numbers=\{?\}
$[1,2,4]$	$[1,2,4,5,7]$	$\}$

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	Test Input numbers=\{?\}
$[1,2,3]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$
$[1,2,4]$	$[1,2,4,5,7]$	$\}$
$[1,2,4,5,6]$		
$[1,2,4,5,7]$		
$[4,5,7]$		$\{1\}$
$[4,5,6]$	$[1,2,3,2,4,5,6,5,7]$	
$[3,2,3]$		$\{1\}$
$[3,2,4]$	$[1,2,3,2,4,5,6,5,7]$	
$[6,5,6]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$
$[6,5,7]$		

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	$\begin{gathered} \text { Test Input } \\ \text { numbers=\{?\} } \end{gathered}$
[1,2,3]	[1,2,3,2,4,5,6,5,7]	\{ 1 \}
[1,2,4]	[1,2,4,5,7]	\{\}
[1,2,4,5,6]		
[1,2,4,5,7]	[1,2,4,5,7]	\{ \}
[4,5,7]	[1,2,4,5,7]	\{ \}
[4,5,6]	23,2,4,5,6,5,7]	\{ 1 \}
[3,2,3]	This test path satisfies other DU-paths too!	
[3,2,4]		\{1\}
[6,5,6]		
[6,5,7]	[1,2,3,2,4,5,6,5,7]	\{ 1 \}

 System.out.println("variance: " + var); System.out.println("std dev: " + sd);
\}

DU-Path	Test Path	Test Input numbers=\{?\}
$[1,2,4,5,6]$	$[1,2,4,5,6,5,7]$	

DU-Path	Test Path	Test Input numbers=\{?\}
$[1,2,4,5,6]$	$[1,2,4,5,6,5,7]$	INFEASIBLE!

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	Test Input numbers=\{?\}	
$[1,2,3]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	
$[1,2,4]$	$[1,2,4,5,7]$	$\}$	
$[1,2,4,5,6]$		INFEASIBLE	
$[1,2,4,5,7]$	$[1,2,4,5,7]$	$\}$	
$[4,5,7]$	$[1,2,4,5,7]$	$\}$	
$[4,5,6]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	
$[3,2,3]$			
$[3,2,4]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	
$[6,5,6]$			
$[6,5,7]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	

public static void computeStats (int[] numbers) \{
int length $=$ numbers.length; int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;
sum $=0$;
for (int $i=0$; $i<l$ length; $i++$) \{ sum += numbers[i];
med = numbers[length/2];
mean = sum $/$ (double) length;
varsum = 0;
for (int $i=0$; $i<l e n g t h ; i++$) $\{$

var = varsum / (length - 1.0);
sd = Math.sqrt(var);
System.out.println("length: System.out.println("mean:
System.out.println(median: " + med); System.out.println("variance: " + var);
\}

DU-Path	Test Path	Test Input numbers=\{?\}
$[3,2,3]$		

 System.out.println("variance: " + med); System.out.println("std dev: " + sd);
\}

DU-Path	Test Path	Test Input numbers=\{?\}
$[3,2,3]$	$[1,2,3,2,3,2,4,5,6,5,6,5,7]$	

Test Paths and Test Inputs

 System.out.println("std dev: " + sd);
\}

DU-Path	Test Path	Test Input numbers=\{?\}
$[3,2,3]$	$[1,2,3,2,3,2,4,5,6,5,6,5,7]$	$\{2,3\}$

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	Test Input numberss=\{?\}
$[1,2,3]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$
$[1,2,4]$	$[1,2,4,5,7]$	$\}$
$[1,2,4,5,6]$		INFEASIBLE
$[1,2,4,5,7]$	$[1,2,4,5,7]$	$\}$
$[4,5,7]$	$[1,2,4,5,7]$	$\}$
$[4,5,6]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$
$[3,2,3]$	$[1,2,3,2,3,2,4,5,6,5,6,5,7]$	$\{2,3\}$
$[3,2,4]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$
$[6,5,6]$		
$[6,5,7]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

Test Paths and Test Inputs

- Find a test path and a test input for each DU-path to satisfy All-Uses coverage:

DU-Path	Test Path	Test Input numbers=\{?\} $[1,2,3]$	
$[1,2,2,3,2,4,5,6,5,7]$	$\{1\}$		
$[1,2,4,5,6]$	$[1,2,4,5,7]$	$\}$	
$[1,2,4,5,7]$	$[1,2,4,5,7]$	INFEASIBLE	
$[4,5,7]$	$[1,2,4,5,7]$	All-Uses is satisfied by 3 tests	
$[4,5,6]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	
$[3,2,3]$	$[1,2,3,2,3,2,4,5,6,5,6,5,7]$	$\{2,3\}$	
$[3,2,4]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	
$[6,5,6]$	$[1,2,3,2,3,2,4,5,6,5,6,5,7]$	$\{2,3\}$	
$[6,5,7]$	$[1,2,3,2,4,5,6,5,7]$	$\{1\}$	

[^0]: z All-Uses Coverage (AUC) - test set T satisfies all-uses coverage on graph G if and only if $T R$ contains a DU-path for every def to every use

