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Overview

 Graph criteria are often applied to program source code
◦ The graph is generally the control flow graph (CFG)

◦ Node coverage requires execution of every statement

◦ Edge coverage requires execution of every branch

◦ Data flow coverage requires augmenting the CFG, where defs
are variable assignments and uses are variable references
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Control Flow Graphs

 A CFG models execution of a method by describing control 
flow structures
◦ A node contains a statement or sequence of statements such that if 

the first statement in the sequence is executed, all statements in the 
sequence are executed (a “basic block”)

◦ An edge is a transfer of control (decision)

◦ CFGs may be annotated with extra information
 Variable defs

 Variable uses

 Source code
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CFG Example: If

if (x < y) {
y = 0;
x = x + 1;

}
else {

x = y;
}

if (x < y) {
y = 0;
x = x + 1;

}
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Note that the text 
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CFG Example: If

if (x < y) {
y = 0;
x = x + 1;

}
else {

x = y;
}

if (x < y) {
y = 0;
x = x + 1;

}
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CFG Example: If-Return

if (x < y) {
return;

}
print (x);

return;
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 Note that there is no edge 
from node 2 to node 3

 The return statements map 
to two distinct terminal 
nodes
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CFG Example: While Loop

x = 0;
while (x < y) {

y = f (x, y);
x = x + 1;

}
return (x);
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 Loops may require dummy 
nodes to correctly model the 
control flow
◦ Dummy nodes do not represent 

statements or basic blocks

◦ Alternate option: annotate node 
(2) with “while(x<y)” and mark 
branches “True” and “False”
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CFG Example: For Loop

for (x=0; x<y; x++) {
y = f (x, y);

}
return (x);
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 For loops have additional 
implicit nodes for 
initialization and 
incrementing

◦ Increment node (4) could be 
combined with node (3), but is 
often left separate to indicate 
that (4) is part of the loop 
structure
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CFG Example: Do Loop

x=0;
do {

y = f (x, y);
x = x + 1;

} while (x < y);
return (x);
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CFG Example: Break and Continue

x=0;
while (x < y) {

y = f(x, y);
if (y == 0) {
break;

}
else if (y < 0) {
y = y * 2;
continue;

}
x = x + 1;

}
return (x);
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CFG Example: Switch/Case

read (c);
switch (c) {

case ‘N’:
z = 25;

case ‘Y’:
x = 50;
break;

default:
x = 0;
break;

}
print (x);
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CFG Example: Exceptions

try
{

s = br.readLine();
if (s.length() > 96)
throw new Exception

(“too long”);
if (s.length() == 0)
throw new Exception

(“too short”);

}
catch (IOException e) {

e.printStackTrace();
}
catch (Exception e) {

e.getMessage();
}
return (s);
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC

24Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Pick an edge that 

increases coverage (tip: 

take the loop first to 

maximize the coverage 

from this test path)
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [ 1,2,3,2,4,5,6,5,7 ]

TRs and Test Paths: EC
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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Start at the initial node and 

pick a starting edge-pair
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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Select an edge that increases 

edge-pair coverage
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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It’s not always possible to 

increase coverage with 

every selected edge
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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42

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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43

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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We need another test path to 

achieve edge-pair coverage
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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47

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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48

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5], 
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6], 
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]
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Edge-pair coverage is 

satisfied with 2 test paths
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TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3], 
[3,2,4,5,6], [3,2,4,5,7], [5,6,5], 
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]
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50

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3], 
[3,2,4,5,6], [3,2,4,5,7], [5,6,5], 
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]
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Tip: take a “greedy 

algorithm” approach and 

try to maximize the 

coverage of each test path
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TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3], 
[3,2,4,5,6], [3,2,4,5,7], [5,6,5], 
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]
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Add additional test paths to 

capture the remaining TRs
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TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3], 
[3,2,4,5,6], [3,2,4,5,7], [5,6,5], 
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]
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TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3], 
[3,2,4,5,6], [3,2,4,5,7], [5,6,5], 
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]
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TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3], 
[3,2,4,5,6], [3,2,4,5,7], [5,6,5], 
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

54Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43



Data Flow Coverage for Source

 Def: a location where a value is stored into memory
◦ Variable appears on the left side of an assignment (e.g. x=44)
◦ Variable is an actual parameter in a call and the method changes its value
◦ Variable is a formal parameter of a method (implicit def when the method is 

called)

 Use: a location where a variable is accessed
◦ Variable appears on the right side of an assignment
◦ Variable appears in a conditional test
◦ Variable is an actual parameter in a call
◦ Variable is an output of the program
◦ Variable is used in a return statement

55Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz



Data Flow Definitions

 DU-pair: a related def and use, where the use can be 
reached from the def

◦ The pair does not need to be def-clear

 Def-clear: a path from a def to a use is def-clear if there 
are no redefinitions of the variable along the path

 DU-path: a simple path from a def to a use that is def-
clear

56Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz
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DU-Pairs in the Same Node

 A def and use are a DU-pair 
only if:

◦ The def comes after the use
within the node, and the node is 
in a loop

 A def and use are not a DU-
pair if:

◦ The use comes after the def, 
or…

◦ The def comes after the use, but 
the node is not in a loop

57Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

1

2

3

y=x //use(x)
…
x=y+1 //def(x)

1

2

3

x=y+1 //def(x)
…
y=x //use(x)

1

2

3

y=x //use(x)
…
x=y+1 //def(x)

This is a “local use” 

and for data flow 

coverage we ignore it



Collaborative Example
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Data Flow Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
} 
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length:   " + length);
System.out.println("mean:     " + mean);
System.out.println("median:   " + med);
System.out.println("variance: " + var);
System.out.println("std dev:  " + sd);

}
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length=…
sum=0
i=0

med=…
…
i=0

sum+=…
i++

varsum=…
i++

var=…
…

i<length i>=length

i<length i>=length
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Data Flow Example: computeStats
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Data Flow Example: computeStats
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def(1) = { numbers, sum, length, i }
use(1) = { numbers }

use(5,7) = { i2, length }use(5,6) = { i2, length }

def(3) = { sum, i }
use(3) = { sum, i, numbers }

def(4) = { med, mean, varsum, i2 }
use(4) = { numbers, length, sum }

def(6) = { varsum, i2 }
use(6) = { varsum, numbers, i2, mean }

def(7) = { var, sd }
use(7) = { varsum, length,

var, mean, med,
sd }

Convert the code 

annotations into def 

and use sets

use(2,4) = { i, length }use(2,3) = { i, length }

Note that due to Java scoping rules, variable “i” 

defined at node 4 is a different variable than the 

“i” defined at node 1; we’ll call this one “i2”



Def/Use Tables for computeStats
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Node Defs Uses

1

2

3

4

5

6

7

Edge Uses

(1,2)

(2,3)

(2,4)

(3,2)

(4,5)

(5,6)

(5,7)

(6,5)



Def/Use for Node 1
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Node Defs Uses

1



Def/Use for Node 1
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Node Defs Uses

1 { numbers, sum, length, i }



Def/Use for Node 1
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Node Defs Uses

1 { numbers, sum, length, i } { numbers }



Def/Use for Node 2
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Node Defs Uses

2



Def/Use for Node 2
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Node Defs Uses

2 -- --



Def/Use for Node 3
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Node Defs Uses

3



Def/Use for Node 3
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Node Defs Uses

3 { sum, i } { sum, i, numbers }



Def/Use for Node 4
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Node Defs Uses

4



Def/Use for Node 4
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Node Defs Uses

4 { med, mean, varsum, i2 } { numbers, length, sum }



Def/Use for Node 5

72Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

5



Def/Use for Node 5
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Node Defs Uses

5 -- --



Def/Use for Node 6
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Node Defs Uses

6



Def/Use for Node 6
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Node Defs Uses

6 { varsum, i2 } { varsum, numbers, i2, 
mean }



Def/Use for Node 7
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Node Defs Uses

7



Def/Use for Node 7
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Node Defs Uses

7 { var, sd } { varsum, length, var, 
mean, med, sd }



Uses for Edge (1,2)
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Edge Uses

(1,2)



Uses for Edge (1,2)
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Edge Uses

(1,2) --



Uses for Edge (2,3)
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Edge Uses

(2,3)



Uses for Edge (2,3)
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Edge Uses

(2,3) { i, length }



Uses for Edge (2,4)
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Edge Uses

(2,4)



Uses for Edge (2,4)
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Edge Uses

(2,4) { i, length }



Uses for Edge (3,2)
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Edge Uses

(3,2)



Uses for Edge (3,2)
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Edge Uses

(3,2) --



Uses for Edge (4,5)
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Edge Uses

(4,5)



Uses for Edge (4,5)
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Edge Uses

(4,5) --



Uses for Edge (5,6)
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Edge Uses

(5,6)



Uses for Edge (5,6)
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Edge Uses

(5,6) { i2, length }



Uses for Edge (5,7)
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Edge Uses

(5,7)



Uses for Edge (5,7)
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Edge Uses

(5,7) { i2, length }



Uses for Edge (6,5)

92Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(6,5)



Uses for Edge (6,5)
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Edge Uses

(6,5) --



Def/Use Tables for computeStats
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Node Defs Uses

1 { numbers, 
sum, length, i }

{ numbers }

2 -- --

3 { sum, i } { sum, i, numbers }

4 { med, mean, 
varsum, i2 }

{ numbers, length, 
sum }

5 -- --

6 { varsum, i2 } { varsum, numbers, 
i2, mean }

7 { var, sd } { varsum, length, var, 
mean, med, sd }

Edge Uses

(1,2) --

(2,3) { i, length }

(2,4) { i, length }

(3,2) --

(4,5) --

(5,6) { i2, length }

(5,7) { i2, length }

(6,5) --



All-Defs Coverage
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 The first (and simplest) data flow 
coverage criterion requires coverage of at 
least one path from each def to at least 
one use of that def
All-Defs Coverage (ADC) – test set T satisfies all-defs coverage on
graph G if and only if TR containsat least one DU-path for every def

D
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All-Uses Coverage

96Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

 A more complete data flow coverage 
criterion requires that there is coverage 
of at least one path from each def to 
every use of that def
All-Uses Coverage (AUC) – test set T satisfies all-uses coverage on
graph G if and only if TR contains a DU-path for every def to every
use

D
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All-DU-Paths Coverage

97Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

 An even more complete data flow 
coverage criterion requires that there is 
coverage of every path from each def to 
every use of that def

All-DU-Paths Coverage (ADUPC) – for each set S=du(ni,nj,v), TR
containsevery path d in S.
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DU-Pairs for computeStats
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Variable DU-Pairs

numbers

length

med

var

sd

mean

sum

varsum

i



DU-Pairs for numbers
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Variable DU-Pairs

numbers



DU-Pairs for numbers
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Variable DU-Pairs

numbers (1,3), (1,4), (1,6)



DU-Pairs for length
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Variable DU-Pairs

length



DU-Pairs for length
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Variable DU-Pairs

length (1,(2,3)), (1,(2,4)), (1,4), (1,(5,6)), (1,(5,7)), (1,7)



DU-Pairs for med
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Variable DU-Pairs

med



DU-Pairs for med
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Variable DU-Pairs

med (4,7)



DU-Pairs for var
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Variable DU-Pairs

var



DU-Pairs for var
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Variable DU-Pairs

var (7,7)



DU-Pairs for var
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Variable DU-Pairs

var (7,7)

var = varsum / (length - 1.0);
...
System.out.println("variance: " + var);
...

Def before use in the same node, so (7,7) is not 

a DU-pair for variable “var”



DU-Pairs for sd
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Variable DU-Pairs

sd



DU-Pairs for sd
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Variable DU-Pairs

sd (7,7)



DU-Pairs for sd
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Variable DU-Pairs

sd (7,7)

...
sd = Math.sqrt(var);
...
System.out.println("std dev:  " + sd);

Def before use in the same node, so (7,7) is not 

a DU-pair for variable “sd”



DU-Pairs for mean
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Variable DU-Pairs

mean



DU-Pairs for mean
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Variable DU-Pairs

mean (4,6), (4,7)



DU-Pairs for sum
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Variable DU-Pairs

sum



DU-Pairs for sum
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Variable DU-Pairs

sum (1,3), (1,4), (3,3), (3,4)



DU-Pairs for varsum
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Variable DU-Pairs

varsum



DU-Pairs for varsum
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Variable DU-Pairs

varsum (4,6), (4,7), (6,6), (6,7)



DU-Pairs for i
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Variable DU-Pairs

i



DU-Pairs for i
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Variable DU-Pairs

i (1,(2,3)), (1,(2,4)), (1,3), (3,(2,3)), (3,(2,4)), (3,3)



DU-Pairs for i
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Variable DU-Pairs

i2



DU-Pairs for i
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Variable DU-Pairs

i2 (4,(5,6)), (4,(5,7)), (4,6), (6,(5,6)), (6,(5,7)), (6,6)



DU-Pairs for computeStats
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Variable DU-Pairs

numbers (1,3), (1,4), (1,6)

length (1,(2,3)), (1,(2,4)), (1,4), (1,(5,6)), (1,(5,7)), (1,7)

med (4,7)

var (7,7)

sd (7,7)

mean (4,6), (4,7)

sum (1,3), (1,4), (3,3), (3,4)

varsum (4,6), (4,7), (6,6), (6,7)

i (1,(2,3)), (1,(2,4)), (1,3), (3,(2,3)), (3,(2,4)), (3,3)

i2 (4,(5,6)), (4,(5,7)), (4,6), (6,(5,6)), (6,(5,7)), (6,6)



DU-Paths for computeStats
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Variable DU-Pairs DU-Paths

numbers (1,3), (1,4), (1,6)

length (1,(2,3)), 
(1,(2,4)), (1,4), 
(1,(5,6)), 
(1,(5,7)), (1,7)

med (4,7)

mean (4,6), (4,7)

sum (1,3), (1,4), (3,3), 
(3,4)

varsum (4,6), (4,7), (6,6), 
(6,7)

i (1,(2,3)), 
(1,(2,4)), (1,3), 
(3,(2,3)), 
(3,(2,4)),(3,3)

i2 (4,(5,6)), 
(4,(5,7)), (4,6), 
(6,(5,6)), 
(6,(5,7)), (6,6)



DU-Paths for numbers
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Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)



DU-Paths for numbers
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Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]



DU-Paths for numbers
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Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]



DU-Paths for numbers
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Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]



DU-Paths for length
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Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)



DU-Paths for length
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Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]



DU-Paths for length
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Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]



DU-Paths for length
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Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]



DU-Paths for length
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Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]



DU-Paths for length

132Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]



DU-Paths for length
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Variable DU-Pairs DU-Paths

length (1,(2,3)) 
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]



DU-Paths for med
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Variable DU-Pairs DU-Paths

med (4,7)



DU-Paths for med
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Variable DU-Pairs DU-Paths

med (4,7) [4,5,7]



DU-Paths for mean
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Variable DU-Pairs DU-Paths

mean (4,6)
(4,7)



DU-Paths for mean
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Variable DU-Pairs DU-Paths

mean (4,6)
(4,7)

[4,5,6]



DU-Paths for mean
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Variable DU-Pairs DU-Paths

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]



DU-Paths for sum
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Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)



DU-Paths for sum
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Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]



DU-Paths for sum
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Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]



DU-Paths for sum
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Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]



DU-Paths for sum
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Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]



DU-Paths for varsum
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Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)



DU-Paths for varsum
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Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]



DU-Paths for varsum
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Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]



DU-Paths for varsum
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Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]



DU-Paths for varsum
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Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]



DU-Paths for i
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Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]



DU-Paths for i2
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Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)



DU-Paths for i2
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Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]



DU-Paths for i2

158Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]



DU-Paths for i2
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Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]



DU-Paths for i2

160Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]



DU-Paths for i2
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Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]



DU-Paths for i2
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Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]



DU-Paths for computeStats
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Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

med (4,7) [4,5,7]

var (7,7) --

sd (7,7) --

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]



3 don’t execute a loop

5 execute a loop at least once

2 execute a loop at least twice

Unique DU-Paths

 32 DU-Paths, but only 10 are unique
◦ [1,2,3]
◦ [1,2,4]
◦ [1,2,4,5,6]
◦ [1,2,4,5,7]
◦ [4,5,7]
◦ [4,5,6]
◦ [3,2,3]
◦ [3,2,4]
◦ [6,5,6]
◦ [6,5,7]
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Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

med (4,7) [4,5,7]

var (7,7) --

sd (7,7) --

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]

All-Defs Coverage
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For All-Defs coverage, we must cover at least 

one DU-path from each def of each variable

Tip: choose DU-paths 

to maximize coverage 

(e.g. maximize reuse)



Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

med (4,7) [4,5,7]

var (7,7) --

sd (7,7) --

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]

All-Uses Coverage
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For All-Uses coverage, we must cover at least one 

DU-path from each def to each use (same as all-

DU-paths in this case because there are no multiple 

paths from any def to any use in this graph)



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3]

[1,2,4]

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6]

[3,2,3]

[3,2,4]

[6,5,6]

[6,5,7]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,3]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,7]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,7] INFEASIBLE

Loops are coupled by same 
inputs, so we can’t skip the 
first loop and execute the 

second!



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4]

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6]

[3,2,3]

[3,2,4]

[6,5,6]

[6,5,7]



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4]

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

This test path satisfies 

other DU-paths too!



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,4]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,4] [1,2,4,5,7]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,4] [1,2,4,5,7] { }

Finds a fault! 
med=numbers[length/2] 

causes an out-of-bounds 
array exception! 



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6]

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

This test path satisfies 

other DU-paths too!



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,4,5,6]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,4,5,6] [1,2,4,5,6,5,7]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[1,2,4,5,6] [1,2,4,5,6,5,7] INFEASIBLE!

Loops are coupled by same 
inputs, so we can’t skip the 
first loop and execute the 

second!



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[3,2,3]



Test Paths and Test Inputs

185Introduction to Software Testing, Edition 2  (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7]



Test Paths and Test Inputs
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DU-Path Test Path Test Input
numbers={?}

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

This test path satisfies 

other DU-paths too!



Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses 
coverage:
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DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

All-Uses is satisfied 

by 3 tests


