
Intro to Software Testing
chapter 7.3

Graph Coverage from Source Code

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Provided by Bob Kurtz

https://go.gmu.edu/SWE637

Graph Coverage

Structures for
Modeling
Software

Input Space Graphs

Source

Design

Specs

Use Cases

Logic

Source

FSMs

Specs

DNF

Syntax

Source

Models

Integration

Input

Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz 2

Applied to Applied to Applied to

Overview

 Graph criteria are often applied to program source code
◦ The graph is generally the control flow graph (CFG)

◦ Node coverage requires execution of every statement

◦ Edge coverage requires execution of every branch

◦ Data flow coverage requires augmenting the CFG, where defs
are variable assignments and uses are variable references

3Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Control Flow Graphs

 A CFG models execution of a method by describing control
flow structures
◦ A node contains a statement or sequence of statements such that if

the first statement in the sequence is executed, all statements in the
sequence are executed (a “basic block”)

◦ An edge is a transfer of control (decision)

◦ CFGs may be annotated with extra information
 Variable defs

 Variable uses

 Source code

4Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

5

CFG Example: If

if (x < y) {
y = 0;
x = x + 1;

}
else {

x = y;
}

if (x < y) {
y = 0;
x = x + 1;

}

5Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2 3

4

x<y x>=y

y=0
x=x+1

x=y

1

2

3

x<y
x>=y

y=0
x=x+1

Note that the text

chooses to annotate

decision edges rather

than decision nodes

6

CFG Example: If

if (x < y) {
y = 0;
x = x + 1;

}
else {

x = y;
}

if (x < y) {
y = 0;
x = x + 1;

}

6Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2 3

4

true false

y=0
x=x+1

x=y

1

2

3

true
false

y=0
x=x+1

Annotating decision

nodes is an alternative,

and equally valid,

approach

if(x<y) if(x<y)

7

CFG Example: If-Return

if (x < y) {
return;

}
print (x);

return;

7Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2

3

x<y
x>=y

return

print(x)
return

 Note that there is no edge
from node 2 to node 3

 The return statements map
to two distinct terminal
nodes

8

CFG Example: While Loop

x = 0;
while (x < y) {

y = f (x, y);
x = x + 1;

}
return (x);

8Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

4

x<y x>=y

y=f(x,y)
x=x+1

return(x)

 Loops may require dummy
nodes to correctly model the
control flow
◦ Dummy nodes do not represent

statements or basic blocks

◦ Alternate option: annotate node
(2) with “while(x<y)” and mark
branches “True” and “False”

2

3

x=0

Dummy node

9

CFG Example: For Loop

for (x=0; x<y; x++) {
y = f (x, y);

}
return (x);

9Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

5

x<y x>=y

y=f(x,y) return(x)

 For loops have additional
implicit nodes for
initialization and
incrementing

◦ Increment node (4) could be
combined with node (3), but is
often left separate to indicate
that (4) is part of the loop
structure

2

3

x=0

Initialization

node

4x++ Increment

node

Comparison

dummy node

10

CFG Example: Do Loop

x=0;
do {

y = f (x, y);
x = x + 1;

} while (x < y);
return (x);

10Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

5

x<y
x>=y

y=f(x,y)
x=x+1

return(x)

2

x=0

11

CFG Example: Break and Continue

x=0;
while (x < y) {

y = f(x, y);
if (y == 0) {
break;

}
else if (y < 0) {
y = y * 2;
continue;

}
x = x + 1;

}
return (x);

11Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

8

y==0

break

y=f(x,y)

return(x)

2

x=0

3

4

5

6

7

y<0

y=y*2
continue

x=x+1

y!=0

y>=0

x>=y
x<y

12

CFG Example: Switch/Case

read (c);
switch (c) {

case ‘N’:
z = 25;

case ‘Y’:
x = 50;
break;

default:
x = 0;
break;

}
print (x);

12Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

5

c==‘N’

x=50
break

print(x)

3

read(c)

2 4
x=0
break

z=25

c==‘Y’
default

Cases without

breaks fall through

to next case

13

CFG Example: Exceptions

try
{

s = br.readLine();
if (s.length() > 96)
throw new Exception

(“too long”);
if (s.length() == 0)
throw new Exception

(“too short”);

}
catch (IOException e) {

e.printStackTrace();
}
catch (Exception e) {

e.getMessage();
}
return (s);

13Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

8

IOException

e.getMessage()

return(s)

3

s=br.readLine()

2

4throw

length>96

5

6

7

e.print
Stack
Trace()

length<=96

length==0

Length
>0

throw

14

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

14Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

15

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

15Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1
length=…
sum=0
i=0

Here I’ve combined the

initialization node to

keep the graph smaller

16

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

16Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2

length=…
sum=0
i=0

i<length i>=length

17

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

17Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2

3

length=…
sum=0
i=0

i<length i>=length

sum+=…
i++

Here I’ve combined the

increment node to

keep the graph smaller

18

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

18Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2

43

length=…
sum=0
i=0

i<length i>=length

med=…
…
i=0

sum+=…
i++

19

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

19Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

5

2

43

length=…
sum=0
i=0

med=…
…
i=0

sum+=…
i++

i<length i>=length

i<length i>=length

20

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

20Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

5

2

6

43

length=…
sum=0
i=0

med=…
…
i=0

sum+=…
i++

varsum=…
i++

i<length i>=length

i<length i>=length

21

CFG Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

21Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

length=…
sum=0
i=0

med=…
…
i=0

sum+=…
i++

varsum=…
i++

var=…
…

i<length i>=length

i<length i>=length

22

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

22Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

23

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

23Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Start at the initial node

24

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

24Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Pick an edge that

increases coverage (tip:

take the loop first to

maximize the coverage

from this test path)

25

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

25Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Continue to pick edges

that increase coverage

26

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

26Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

27

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

27Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

28

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

28Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

29

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

29Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

30

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

30Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

31

 Edge Coverage TRs

◦ [1,2], [2,3], [2,4], [3,2],
[4,5], [5,6], [5,7], [6,5]

 Test paths

◦ [1,2,3,2,4,5,6,5,7]

TRs and Test Paths: EC

31Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Edge coverage is satisfied

with 1 test path

32

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

32Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

33

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

33Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Start at the initial node and

pick a starting edge-pair

34

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

34Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Select an edge that increases

edge-pair coverage

35

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

35Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

36

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

36Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

It’s not always possible to

increase coverage with

every selected edge

37

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

37Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

38

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

38Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

39

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

39Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

40

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

40Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

41

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

41Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

42

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

42Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

43

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

43Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

44

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

44Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

We need another test path to

achieve edge-pair coverage

45

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

45Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

46

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

46Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

47

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

47Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

48

TRs and Test Paths: EPC

 Edge-Pair TRs

◦ [1,2,3], [1,2,4], [2,3,2], [2,4,5],
[3,2,3], [3,2,4],
[4,5,6], [4,5,7], [5,6,5], [6,5,6],
[6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

48Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Edge-pair coverage is

satisfied with 2 test paths

49

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3],
[3,2,4,5,6], [3,2,4,5,7], [5,6,5],
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

49Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

50

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3],
[3,2,4,5,6], [3,2,4,5,7], [5,6,5],
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

50Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Tip: take a “greedy

algorithm” approach and

try to maximize the

coverage of each test path

51

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3],
[3,2,4,5,6], [3,2,4,5,7], [5,6,5],
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

51Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Add additional test paths to

capture the remaining TRs

52

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3],
[3,2,4,5,6], [3,2,4,5,7], [5,6,5],
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

52Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

53

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3],
[3,2,4,5,6], [3,2,4,5,7], [5,6,5],
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

53Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

54

TRs and Test Paths: PPC

 Prime Path TRs

◦ [1,2,3], [1,2,4,5,6],
[1,2,4,5,7], [2,3,2], [3,2,3],
[3,2,4,5,6], [3,2,4,5,7], [5,6,5],
[6,5,6], [6,5,7]

 Test paths
◦ [1,2,3,2,3,2,4,5,6,5,6,5,7]

◦ [1,2,4,5,7]

◦ [1,2,4,5,6,5,7]

◦ [1,2,3,2,4,5,7]

54Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

Data Flow Coverage for Source

 Def: a location where a value is stored into memory
◦ Variable appears on the left side of an assignment (e.g. x=44)
◦ Variable is an actual parameter in a call and the method changes its value
◦ Variable is a formal parameter of a method (implicit def when the method is

called)

 Use: a location where a variable is accessed
◦ Variable appears on the right side of an assignment
◦ Variable appears in a conditional test
◦ Variable is an actual parameter in a call
◦ Variable is an output of the program
◦ Variable is used in a return statement

55Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Data Flow Definitions

 DU-pair: a related def and use, where the use can be
reached from the def

◦ The pair does not need to be def-clear

 Def-clear: a path from a def to a use is def-clear if there
are no redefinitions of the variable along the path

 DU-path: a simple path from a def to a use that is def-
clear

56Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

57

DU-Pairs in the Same Node

 A def and use are a DU-pair
only if:

◦ The def comes after the use
within the node, and the node is
in a loop

 A def and use are not a DU-
pair if:

◦ The use comes after the def,
or…

◦ The def comes after the use, but
the node is not in a loop

57Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

2

3

y=x //use(x)
…
x=y+1 //def(x)

1

2

3

x=y+1 //def(x)
…
y=x //use(x)

1

2

3

y=x //use(x)
…
x=y+1 //def(x)

This is a “local use”

and for data flow

coverage we ignore it

Collaborative Example

58Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

59

Data Flow Example: computeStats

public static void computeStats (int[] numbers) {
int length = numbers.length;
double med, var, sd;
double mean, sum, varsum;

sum = 0;
for (int i=0; i<length; i++) {

sum += numbers[i];
}
med = numbers[length/2];
mean = sum / (double) length;

varsum = 0;
for (int i=0; i<length; i++) {

varsum = varsum + ((numbers[i] - mean)
* (numbers[i] - mean));

}
var = varsum / (length - 1.0);
sd = Math.sqrt(var);

System.out.println("length: " + length);
System.out.println("mean: " + mean);
System.out.println("median: " + med);
System.out.println("variance: " + var);
System.out.println("std dev: " + sd);

}

59Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

length=…
sum=0
i=0

med=…
…
i=0

sum+=…
i++

varsum=…
i++

var=…
…

i<length i>=length

i<length i>=length

60

Data Flow Example: computeStats

60Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Data Flow Example: computeStats

61Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

1

7

5

2

6

43

def(1) = { numbers, sum, length, i }
use(1) = { numbers }

use(5,7) = { i2, length }use(5,6) = { i2, length }

def(3) = { sum, i }
use(3) = { sum, i, numbers }

def(4) = { med, mean, varsum, i2 }
use(4) = { numbers, length, sum }

def(6) = { varsum, i2 }
use(6) = { varsum, numbers, i2, mean }

def(7) = { var, sd }
use(7) = { varsum, length,

var, mean, med,
sd }

Convert the code

annotations into def

and use sets

use(2,4) = { i, length }use(2,3) = { i, length }

Note that due to Java scoping rules, variable “i”

defined at node 4 is a different variable than the

“i” defined at node 1; we’ll call this one “i2”

Def/Use Tables for computeStats

62Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

1

2

3

4

5

6

7

Edge Uses

(1,2)

(2,3)

(2,4)

(3,2)

(4,5)

(5,6)

(5,7)

(6,5)

Def/Use for Node 1

63Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

1

Def/Use for Node 1

64Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

1 { numbers, sum, length, i }

Def/Use for Node 1

65Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

1 { numbers, sum, length, i } { numbers }

Def/Use for Node 2

66Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

2

Def/Use for Node 2

67Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

2 -- --

Def/Use for Node 3

68Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

3

Def/Use for Node 3

69Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

3 { sum, i } { sum, i, numbers }

Def/Use for Node 4

70Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

4

Def/Use for Node 4

71Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

4 { med, mean, varsum, i2 } { numbers, length, sum }

Def/Use for Node 5

72Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

5

Def/Use for Node 5

73Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

5 -- --

Def/Use for Node 6

74Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

6

Def/Use for Node 6

75Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

6 { varsum, i2 } { varsum, numbers, i2,
mean }

Def/Use for Node 7

76Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

7

Def/Use for Node 7

77Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

7 { var, sd } { varsum, length, var,
mean, med, sd }

Uses for Edge (1,2)

78Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(1,2)

Uses for Edge (1,2)

79Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(1,2) --

Uses for Edge (2,3)

80Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(2,3)

Uses for Edge (2,3)

81Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(2,3) { i, length }

Uses for Edge (2,4)

82Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(2,4)

Uses for Edge (2,4)

83Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(2,4) { i, length }

Uses for Edge (3,2)

84Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(3,2)

Uses for Edge (3,2)

85Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(3,2) --

Uses for Edge (4,5)

86Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(4,5)

Uses for Edge (4,5)

87Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(4,5) --

Uses for Edge (5,6)

88Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(5,6)

Uses for Edge (5,6)

89Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(5,6) { i2, length }

Uses for Edge (5,7)

90Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(5,7)

Uses for Edge (5,7)

91Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(5,7) { i2, length }

Uses for Edge (6,5)

92Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(6,5)

Uses for Edge (6,5)

93Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Edge Uses

(6,5) --

Def/Use Tables for computeStats

94Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Node Defs Uses

1 { numbers,
sum, length, i }

{ numbers }

2 -- --

3 { sum, i } { sum, i, numbers }

4 { med, mean,
varsum, i2 }

{ numbers, length,
sum }

5 -- --

6 { varsum, i2 } { varsum, numbers,
i2, mean }

7 { var, sd } { varsum, length, var,
mean, med, sd }

Edge Uses

(1,2) --

(2,3) { i, length }

(2,4) { i, length }

(3,2) --

(4,5) --

(5,6) { i2, length }

(5,7) { i2, length }

(6,5) --

All-Defs Coverage

95Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

 The first (and simplest) data flow
coverage criterion requires coverage of at
least one path from each def to at least
one use of that def
All-Defs Coverage (ADC) – test set T satisfies all-defs coverage on
graph G if and only if TR containsat least one DU-path for every def

D
EF

IN
IT

IO
N

All-Uses Coverage

96Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

 A more complete data flow coverage
criterion requires that there is coverage
of at least one path from each def to
every use of that def
All-Uses Coverage (AUC) – test set T satisfies all-uses coverage on
graph G if and only if TR contains a DU-path for every def to every
use

D
EF

IN
IT

IO
N

All-DU-Paths Coverage

97Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

 An even more complete data flow
coverage criterion requires that there is
coverage of every path from each def to
every use of that def

All-DU-Paths Coverage (ADUPC) – for each set S=du(ni,nj,v), TR
containsevery path d in S.

D
EF

IN
IT

IO
N

DU-Pairs for computeStats

98Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

numbers

length

med

var

sd

mean

sum

varsum

i

DU-Pairs for numbers

99Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

numbers

DU-Pairs for numbers

100Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

numbers (1,3), (1,4), (1,6)

DU-Pairs for length

101Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

length

DU-Pairs for length

102Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

length (1,(2,3)), (1,(2,4)), (1,4), (1,(5,6)), (1,(5,7)), (1,7)

DU-Pairs for med

103Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

med

DU-Pairs for med

104Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

med (4,7)

DU-Pairs for var

105Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

var

DU-Pairs for var

106Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

var (7,7)

DU-Pairs for var

107Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

var (7,7)

var = varsum / (length - 1.0);
...
System.out.println("variance: " + var);
...

Def before use in the same node, so (7,7) is not

a DU-pair for variable “var”

DU-Pairs for sd

108Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

sd

DU-Pairs for sd

109Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

sd (7,7)

DU-Pairs for sd

110Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

sd (7,7)

...
sd = Math.sqrt(var);
...
System.out.println("std dev: " + sd);

Def before use in the same node, so (7,7) is not

a DU-pair for variable “sd”

DU-Pairs for mean

111Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

mean

DU-Pairs for mean

112Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

mean (4,6), (4,7)

DU-Pairs for sum

113Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

sum

DU-Pairs for sum

114Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

sum (1,3), (1,4), (3,3), (3,4)

DU-Pairs for varsum

115Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

varsum

DU-Pairs for varsum

116Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

varsum (4,6), (4,7), (6,6), (6,7)

DU-Pairs for i

117Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

i

DU-Pairs for i

118Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

i (1,(2,3)), (1,(2,4)), (1,3), (3,(2,3)), (3,(2,4)), (3,3)

DU-Pairs for i

119Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

i2

DU-Pairs for i

120Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

i2 (4,(5,6)), (4,(5,7)), (4,6), (6,(5,6)), (6,(5,7)), (6,6)

DU-Pairs for computeStats

121Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs

numbers (1,3), (1,4), (1,6)

length (1,(2,3)), (1,(2,4)), (1,4), (1,(5,6)), (1,(5,7)), (1,7)

med (4,7)

var (7,7)

sd (7,7)

mean (4,6), (4,7)

sum (1,3), (1,4), (3,3), (3,4)

varsum (4,6), (4,7), (6,6), (6,7)

i (1,(2,3)), (1,(2,4)), (1,3), (3,(2,3)), (3,(2,4)), (3,3)

i2 (4,(5,6)), (4,(5,7)), (4,6), (6,(5,6)), (6,(5,7)), (6,6)

DU-Paths for computeStats

122Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3), (1,4), (1,6)

length (1,(2,3)),
(1,(2,4)), (1,4),
(1,(5,6)),
(1,(5,7)), (1,7)

med (4,7)

mean (4,6), (4,7)

sum (1,3), (1,4), (3,3),
(3,4)

varsum (4,6), (4,7), (6,6),
(6,7)

i (1,(2,3)),
(1,(2,4)), (1,3),
(3,(2,3)),
(3,(2,4)),(3,3)

i2 (4,(5,6)),
(4,(5,7)), (4,6),
(6,(5,6)),
(6,(5,7)), (6,6)

DU-Paths for numbers

123Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

DU-Paths for numbers

124Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]

DU-Paths for numbers

125Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]

DU-Paths for numbers

126Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

DU-Paths for length

127Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

DU-Paths for length

128Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]

DU-Paths for length

129Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]

DU-Paths for length

130Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]

DU-Paths for length

131Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]

DU-Paths for length

132Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]

DU-Paths for length

133Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

DU-Paths for med

134Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

med (4,7)

DU-Paths for med

135Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

med (4,7) [4,5,7]

DU-Paths for mean

136Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

mean (4,6)
(4,7)

DU-Paths for mean

137Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

mean (4,6)
(4,7)

[4,5,6]

DU-Paths for mean

138Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

DU-Paths for sum

139Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

DU-Paths for sum

140Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]

DU-Paths for sum

141Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]

DU-Paths for sum

142Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]

DU-Paths for sum

143Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

DU-Paths for varsum

144Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

DU-Paths for varsum

145Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]

DU-Paths for varsum

146Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]

DU-Paths for varsum

147Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]

DU-Paths for varsum

148Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

DU-Paths for i

149Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

DU-Paths for i

150Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]

DU-Paths for i

151Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]

DU-Paths for i

152Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]

DU-Paths for i

153Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]

DU-Paths for i

154Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]

DU-Paths for i

155Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

DU-Paths for i2

156Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

DU-Paths for i2

157Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]

DU-Paths for i2

158Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]

DU-Paths for i2

159Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]

DU-Paths for i2

160Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]

DU-Paths for i2

161Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]

DU-Paths for i2

162Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]

DU-Paths for computeStats

163Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

med (4,7) [4,5,7]

var (7,7) --

sd (7,7) --

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]

3 don’t execute a loop

5 execute a loop at least once

2 execute a loop at least twice

Unique DU-Paths

 32 DU-Paths, but only 10 are unique
◦ [1,2,3]
◦ [1,2,4]
◦ [1,2,4,5,6]
◦ [1,2,4,5,7]
◦ [4,5,7]
◦ [4,5,6]
◦ [3,2,3]
◦ [3,2,4]
◦ [6,5,6]
◦ [6,5,7]

164Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

med (4,7) [4,5,7]

var (7,7) --

sd (7,7) --

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]

All-Defs Coverage

165Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

For All-Defs coverage, we must cover at least

one DU-path from each def of each variable

Tip: choose DU-paths

to maximize coverage

(e.g. maximize reuse)

Variable DU-Pairs DU-Paths

numbers (1,3)
(1,4)
(1,6)

[1,2,3]
[1,2,4]
[1,2,4,5,6]

length (1,(2,3))
(1,(2,4))
(1,4)
(1,(5,6))
(1,(5,7))
(1,7)

[1,2,3]
[1,2,4]
[1,2,4]
[1,2,4,5,6]
[1,2,4,5,7]
[1,2,4,5,7]

med (4,7) [4,5,7]

var (7,7) --

sd (7,7) --

mean (4,6)
(4,7)

[4,5,6]
[4,5,7]

Variable DU-Pairs DU-Paths

sum (1,3)
(1,4)
(3,3)
(3,4)

[1,2,3]
[1,2,4]
[3,2,3]
[3,2,4]

varsum (4,6)
(4,7)
(6,6)
(6,7)

[4,5,6]
[4,5,7]
[6,5,6]
[6,5,7]

i (1,(2,3))
(1,(2,4))
(1,3)
(3,(2,3))
(3,(2,4))
(3,3)

[1,2,3]
[1,2,4]
[1,2,3]
[3,2,3]
[3,2,4]
[3,2,3]

i2 (4,(5,6))
(4,(5,7))
(4,6)
(6,(5,6))
(6,(5,7))
(6,6)

[4,5,6]
[4,5,7]
[4,5,6]
[6,5,6]
[6,5,7]
[6,5,6]

All-Uses Coverage

166Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

For All-Uses coverage, we must cover at least one

DU-path from each def to each use (same as all-

DU-paths in this case because there are no multiple

paths from any def to any use in this graph)

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

167Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3]

[1,2,4]

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6]

[3,2,3]

[3,2,4]

[6,5,6]

[6,5,7]

Test Paths and Test Inputs

168Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3]

Test Paths and Test Inputs

169Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,7]

Test Paths and Test Inputs

170Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,7] INFEASIBLE

Loops are coupled by same
inputs, so we can’t skip the
first loop and execute the

second!

Test Paths and Test Inputs

171Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7]

Test Paths and Test Inputs

172Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

173Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4]

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6]

[3,2,3]

[3,2,4]

[6,5,6]

[6,5,7]

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

174Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4]

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

This test path satisfies

other DU-paths too!

Test Paths and Test Inputs

175Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,4]

Test Paths and Test Inputs

176Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,4] [1,2,4,5,7]

Test Paths and Test Inputs

177Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,4] [1,2,4,5,7] { }

Finds a fault!
med=numbers[length/2]

causes an out-of-bounds
array exception!

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

178Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6]

[1,2,4,5,7]

[4,5,7]

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

179Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6]

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

This test path satisfies

other DU-paths too!

Test Paths and Test Inputs

180Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,4,5,6]

Test Paths and Test Inputs

181Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,4,5,6] [1,2,4,5,6,5,7]

Test Paths and Test Inputs

182Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,4,5,6] [1,2,4,5,6,5,7] INFEASIBLE!

Loops are coupled by same
inputs, so we can’t skip the
first loop and execute the

second!

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

183Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3]

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

Test Paths and Test Inputs

184Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[3,2,3]

Test Paths and Test Inputs

185Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7]

Test Paths and Test Inputs

186Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

187Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6]

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

188Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

This test path satisfies

other DU-paths too!

Test Paths and Test Inputs

 Find a test path and a test input for each DU-path to satisfy All-Uses
coverage:

189Introduction to Software Testing, Edition 2 (Ch 7), (c) Ammann, Offutt, Kurtz

DU-Path Test Path Test Input
numbers={?}

[1,2,3] [1,2,3,2,4,5,6,5,7] { 1 }

[1,2,4] [1,2,4,5,7] { }

[1,2,4,5,6] INFEASIBLE

[1,2,4,5,7] [1,2,4,5,7] { }

[4,5,7] [1,2,4,5,7] { }

[4,5,6] [1,2,3,2,4,5,6,5,7] { 1 }

[3,2,3] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[3,2,4] [1,2,3,2,4,5,6,5,7] { 1 }

[6,5,6] [1,2,3,2,3,2,4,5,6,5,6,5,7] { 2, 3 }

[6,5,7] [1,2,3,2,4,5,6,5,7] { 1 }

All-Uses is satisfied

by 3 tests

