
Intro to Software Testing
chapter 9

Syntax Coverage & Mutation Testing
Dr. Brittany Johnson-Matthews

(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Logic Coverage

2

Structures for
Modeling Software

Input Space Graphs

Source

Design

Specs

Use Cases

Logic

Source

FSMs

Specs

DNF

Syntax

Source

Models

Integration

Input

Applied to Applied to Applied to

Syntax-based testing
Software artifacts often have syntax rules

We can use two approaches when developing tests based on syntax
Cover the syntax in some way
Violate the syntax (to create invalid test cases)

3

Fuzzing
One common use of syntax manipulation is fuzzing or fuzz testing

The objective it to provide inputs to the system that are “correct enough” to pass
any input validation, but “incorrect enough” to expose defects and/or
unexpected behaviors

Fuzzing may selectively modify the input grammar, or may use heuristics based
on past experience, or may simply make randomized changes

4

Violating the Syntax - Heartbleed

5
https://xkcd.com/1354/

Violating the Syntax - Heartbleed

6
https://xkcd.com/1354/

Defining Mutation

7

Mutation testing is a generalization of fuzzing.

In mutation testing, we
1. Take a ground string (a syntactically valid original artifact),
2. apply a mutation operator (a rule that governs how to modify the artifact),
3. to generate a mutant (a modified artifact) that is either in the grammar (valid) or very

close to being in the grammar, then
4. determine whether the mutant exhibits different behavior than the ground

string, which detects or kills the mutant

Mutation TESTING

8

Mutation testing can be applied to
Input grammars (SQL, HTML, XML, etc.)
Modeling languages (state charts, activity diagrams, etc.)
Specification languages (Z, SMV, algebraic specifications, DNF)
Program source code

This is the type of mutation
testing we’ll be talking about

PROGRAM MUTATION

9

This is the original and most widely-known use of mutation, and is
generally applied to individual classes or methods

Mutation operators are applied to the ground string (the original
program) to produce a set of mutants (modified programs)

The resulting mutants are not tests, but can be used to develop or
evaluate tests

WHAT'S MUTATION TESTING FOR?

10

This is the original and most widely-known use of mutation, and is
generally applied to individual classes or methods

Mutation operators are applied to the ground string (the original
program) to produce a set of mutants (modified programs)

The resulting mutants are not tests, but can be used to develop or
evaluate tests

WHAT'S MUTATION TESTING FOR?

11

Mutation testing can be used in two complementary ways:
1. Test development: write tests to kill mutants

This is how software developers use mutation testing (when they use it at
all); the leading tool is probably PIT (https://pitest.org) though Google
has established their own in-house capability

2. Test evaluation: given a set of tests developed using some other
criteria, how complete are those tests?

This is how software researchers tend to use mutation testing

https://pitest.org

Why does mutation work?

12

Competent Programmer Hypothesis: programmers are generally
competent and tend to write programs that are nearly correct

The small changes to programs introduced by mutation testing are
considered to be reasonable approximations for the types of errors
inadvertently injected by engineers

Why does mutation work?

13

Coupling Hypothesis: complex faults are coupled to simple faults in
such a way that a test data set that detects all simple faults in a program
will detect a high percentage of the complex faults

The faults generated by mutation testing are useful proxies for
actual faults

CATEGORIES OF MUTANTS

14

Live: a mutant that has not been killed by a test
Killed (or dead): a mutant that has been killed by a test (its behavior is
different than the original)
Stillborn: a syntactically invalid mutant that cannot be compiled or executed
Trivial: a mutant that is killed by every test that reaches the mutation, usually
by exception
Equivalent: a mutant that behaves identically to the ground string, such that
no test can kill it

This seems counter-intuitive but is quite common

Mutation Coverage

15

A test t kills a mutant m if and only if the behavior of m while executing t differs
from the behavior of the ground string while executing t

The mutation coverage metric is based on the proportion of mutants killed, also
known as the mutation score

Mutation Coverage (MC) – For each mutant m in the set of
mutants M, TR contains exactly one requirement: to kill m.

DE
FI
NI
TI
ON

Mutation Example

16

A test for m1:
assertEquals(2, max(1, 2));

Mutant m1 is killed (returns 1 instead of 2)

// Ground string
// (original program)
int max (int i, int j)
{
if (i >= j)
return i;

else
return j;

}

// Mutant m1
// (modified program)
int max (int i, int j)
{

if (i <= j)
return i;

else
return j;

} Mutate a relational
operator

Mutation Example

17

A test for m2:
assertEquals(2, max(1, 2));

Mutant m2 is killed (returns 1 instead of 2)

// Ground string
// (original program)
int max (int i, int j)
{
if (i >= j)
return i;

else
return j;

}

// Mutant m2
// (modified program)
int max (int i, int j)
{
if (i >= j)
return i;

else
return i;

}

Mutate a variable

Mutation Example

18

A test for m3:
assertEquals(2, max(1, 2));

Mutant m3 is killed and trivial – it is killed by any test that reaches it

// Ground string
// (original program)
int max (int i, int j)
{
if (i >= j)
return i;

else
return j;

}

// Mutant m2
// (modified program)
int max (int i, int j)
{
if (i >= j)
trap();

else
return j;

} Crash the program
whenever the mutation

is reached

Mutation Example

19

A test for m4:
assertEquals(2, max(1, 2));

Mutant m4 is equivalent – no test exists that can kill it

// Ground string
// (original program)
int max (int i, int j)
{
if (i >= j)
return i;

else
return j;

}

// Mutant m2
// (modified program)
int max (int i, int j)
{
if (i > j)
return i;

else
return j;

} Mutate a relational
operator

Mutation Notation

20

Mutants are often shown in a single
consolidated listing, with deltas marked

// Ground string
// (original program)
int max (int i, int j)
{
if (i >= j)
return i;

else
return j;

}

// Mutant m4
// (modified program)
int max (int i, int j)
{
if (i >= j)

∆1 if (i <= j)
∆4 if (i > j)

return i;
∆3 trap();

else
return j;

∆2 return i;
}

Mutation Coverage Revisited

21

Consider the RIPR model
Program execution must reach the fault
The fault must infect the program state with an error
The error must propagate to an output
The error must be revealed to the tester

This suggests two definitions for kill

Mutation Coverage (MC) – For each mutant m in the set of
mutants M, TR contains exactly one requirement: to kill m.

DE
FI
NI
TI
ON

Strong and Weak Mutation

22

Strong mutation: given a mutant m ∊ M for a program P and a test t, t strongly
kills m if and only if the output of t on P is different from the output of t on m.

Strong mutation requires reachability, infection, propagation, and revealability

Weak mutation: given a mutant m ∊ M that modifies a location l in program P and
a test t, t weakly kills m if and only if the state of execution of t on P is different
from the state of execution of t on m immediately after l.

Weak mutation requires only reachability and infection

Strong and Weak Mutation

23

It is easier to weakly kill mutants than to strongly kill them
However, it can be difficult to determine whether a mutant has been weakly
killed

Some mutants can be weakly killed but not strongly killed (the error
does not propagate or is not revealed)

Studies have found that tests that weakly kill mutants also tend to
strongly kill them

Weak vs. Strong Example

24

boolean isEven (int i)
{
if (i < 0)
i = 0 – i;

∆1 i = 0 + i;
if (i == ((i/2)*2))
return true;

else
return false;

}

For P, i=4

For m, i=-4
thus t weakly kills m

P and m both return
true, so t does not

strongly kill m

Given t = assertTrue(isEven(-4))

Mutation Test Development

25

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

Mutation Test Development

26

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

Take the initial program
P and mutate it to
produce a set of
mutants m1..mN

Mutation Test Development

27

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

Select some mutant mi

and write a test to kill it
(or determine it is

equivalent)

Mutation Test Development

28

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

Did analysis of the
mutant and test indicate

an error in P?

Mutation Test Development

29

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

If yes, then modify P to
correct the error and

re-mutate P’.

Mutation Test Development

30

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

If no, then assess
completeness of

testing, usually by a
mutation score

threshold

Mutation Test Development

31

P Mutate P m1-n

Write a test
t to kill mi

Error
Found?

Modify P
Select another

mi

Done?End

Begin

Yes

Yes No

No

If not done, then select
another mutant mi and

repeat the process

Mutation Test Development

32

This process is extremely labor-intensive and thus expensive

The outcome of the process is a very strong set of tests, if
the mutation operators are well-designed

Designing Mutation Operators

33

A good mutation operator
Creates mutants that are similar to programmer errors
Creates mutants that tend to elicit effective tests

Researchers design lots of operators, then empirically
determine which are effective

If tests created to kill mutants generated by one operator also
tend to kill mutants developed by other operators, than
that operator is effective

Some Java Mutation Operators

34

AOD – arithmetic operator deletion
AOI – arithmetic operator insertion
AOR – arithmetic operator replacement
COD – conditional operator deletion
COI – conditional operator insertion
COR – conditional operator replacement
LOD – logical operator deletion
LOI – logical operator insertion
LOR – logical operator replacement
ROR – relational operator replacement
SDL – statement deletion
SOR – shift operator replacement

Mutation Operator Examples

35

AOD – arithmetic operator deletion
a = b + c

∆1 a = b + c
∆2 a = b + c

AOI – arithmetic operator insertion
a = b + c

∆1 a = -b + c
∆2 a = b + c++

AOR – arithmetic operator replacement
a = b + c

∆1 a = b - c
∆2 a = b % c

Mutation Operator Examples

36

COD – conditional operator deletion
if (a && !b)

∆1 if (a && !b)
∆2 if (a && !b)

COI – conditional operator insertion
if (a && b)

∆1 if (!(a && b))
∆2 if (a && b || true)

COR – conditional operator replacement
if (a && b)

∆1 if (a || b)
∆2 if (false)

Mutation Operator Examples

37

LOD – logical operator deletion
a = b | c

∆1 a = b | c
∆2 a = b | c

LOI – logical operator insertion
a = b | c

∆1 a = ~b | c
∆2 a = b | ~c

LOR – logical operator replacement
a = b | c

∆1 a = b & c
∆2 a = b ^ c

Mutation Operator Examples

38

ROR – relational operator replacement
if (a < b)

∆1 if (a > b)
∆2 if (true)

SDL – statement deletion
if (a && b) { c = true }

∆1 if (a && b) { c = true }
∆2 if (a && b) { c = true }
∆3 if (a && b) { c = true }

SOR – shift operator replacement
a = b >> c

∆1 a = b << c
∆2 a = b >>> c

The Mutation Score Problem

39

Mutation score measures the coverage with respect
to the mutation criterion

𝑀𝑆 =
𝑚𝑢𝑡𝑎𝑛𝑡𝑠!"##$%

𝑚𝑢𝑡𝑎𝑛𝑡𝑠&'&(# −𝑚𝑢𝑡𝑎𝑛𝑡𝑠$)*"+(#$,&

The problem is that we can’t know how many
mutants are equivalent until we’ve evaluated all of
them, thus we can’t know the mutation score until
it’s 100%!

Summary

40

Mutation testing can be used to develop tests or to
evaluate tests

Mutation testing is very powerful, but very expensive
As a result, it currently remains primarily a research tool

