INTRO TO SOFTWARE TESTING

final Exam Preview

Dr. Brittany Johnson-Matthews

(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

"At Least it's not the cybersecurity Exam!"

EXAM SCHEDULE

Final exam date:
Thursday May 12, 4:30 pm (regular class day, time, and location)
Talk to me about alternatives if you have other exam scheduled that day
The exam will be on Blackboard and will have a time limit (3 hr class time)
Open everything, except classmates
By University policy, unexcused absence from exam
Be sure to coordinate with me ahead of time

FINAL EXAM STRUCTURE

The final exam will have 5 sections, each worth 20 points:

1. Short answers
2. Input Space Coverage
3. Graph Coverage
4. Logic Coverage
5. Syntax Coverage
6. Bonus

SECTION 1 - SHORT ANSWERS

Expect 10 questions, worth 2 points each, taken randomly from the following categories:

Agile testing and basic definitions, such as fault/error/failure and the RIPR model
Input space coverage
Graph coverage
Logic coverage
Syntax coverage
Questions will be a combination of:
Multiple choice
True/false
Fill in the blank

SECTION 2 - INPUT SPACE COVERAGE

This section will have one (possibly multi-part) problem worth 20 points in total

Topics may include:
Developing sets of characteristics
Identifying complete, disjoint partitions
Identifying test requirements for base-choice and pairwise criteria
Identifying and replacing infeasible test requirements

SECTION 3 - Graph COVERaGE

This section will have one (possibly multi-part) problem worth 20 points in total

Topics may include:
Drawing/identifying a graph from a set of nodes or from source code
Finding test requirements to satisfy node, edge, edge-pair, prime path, DUpair/path coverage
Identifying prime paths and test paths
WILL NOT include 7.4-7.6

SECTION 4 - LOGIC COVERAGE

This section will have one (possibly multi-part) problem worth 20 points in total

Topics may include:
Building truth tables
Identifying when a clause determines the predicate using truth tables and/or the XOR method
Building K-maps and using them to identify prime implicants
Identifying test requirements to satisfy GACC, CACC, and/or RACC coverage WILL NOT include ICC, MUTP, CUTPNFP or MUMCUT problems (though these topics may appear in Section 1 questions)

SECTION 5 - Syntax COVERAGE

This section will have one (possibly multi-part) problem worth 20 points in total

Topics may include:
Using mutation operators to create mutants
Strong vs. weak mutation
Identifying killable, equivalent, and trivial mutants (not dominator or productive mutants)
Writing test to kill mutants
Will include only source code mutation testing, WILL NOT include BNF or other chapter 9 topics

SECTION 6 - BONUS

This section will have one (possibly multi-part) problem worth 5 points

Topics may include:
UTPs, NFPs, ICC, or MUTP
Mutant subsumption or other advanced mutation testing topics
Compare/contrast coverage criteria from different categories

TEST STRATEGIES

By this point in your academic journey, you likely have your own testtaking strategies.

A few suggestions:
Skip questions that you don't immediately know the answer to
Try not to reference notes or resources for every question
Only work on the bonus once you've completed the exam questions
If you stay ready, you don't have to get ready!

