[ntroduction to Software Testing
araphs of Source Code (Ch. 7.3)

Software Testing & Maintenance Dr. Brittany Johnson-Matthews
SWE 437 (Dr. B for short)

http://go.gmu.edu/swe437

Overview

A common application of graph criteria is to program source
Graph: Usually the control flow graph (CFG)

Node coverage: Execute every statement

Edge coverage: Execute every branch

Loops: Looping structures such as for loops, while loops, etc.

Data flow coverage: Augment the CFG
-defs are statements that assign values to variables
-uses are statements that use variables

Control Flow Graphs

A CFG models all executions of a method by describing control structures
Nodes: statements or sequences of statements (basic blocks)
Edges: Transfers of control

Basic block: A sequence of statements such that if the first statement is executed, all statements
will be (no branches)

CFGs are sometimes annotated with extra information

branch predicates
defs
uses

Rules for translating statements into graphs...

Draw the graph.
Label the edges
with the Java
Statements.

1f (x < vy)
{
y = 0;
X =X+ 1;
hy
else
{
X =Y,
hy
1f (x < vy)
{
y = 0;
X =X+ 1;
3

Draw the graph
and label the
edges.

(FG: The if Statement

X <Y X >=y
y =0
X = X + X=Y

(FG: The 1f-return Statement

. 1
1f (x < vy) X <y
{ Draw the graph

return; and label the return Xx>=y
¥ d
print (x); cages \ .
return; %@nt

return

No edge from node 2 to 3.
The return nodes must be distinct.

Loops

Loops require “extra” nodes to be added

Nodes that do not represent statements or basic blocks

(FG:whileand for loops

X = 0;
v%’hlle (x <) Draw the graph dummy node

y = f (X, y); and label the

X =X+ 1; eages. implicitly initializes
ks loop
return (x);

for (X = 0; X <y; X++)
{ Draw the graph
y = f (x, y); and label the

1 edges, IO NO

return (x);

implicitly increments
loop

(HG: d0|00p break, Ahd con tlnue

X = 0;
do
{
y = f (X, y);
= X + 1;

} while (x < y);
return (y);

Draw the graph
and label the
edges.

X = 0;
while (x < vy)
{
= f (X, YD;
1f (y == 0)
{
break;

} else 1f (y < 0)
{
y = y*Z;
continue;
ks
X =X+ 1;
Iy
return (y);

Draw the graph
and label the
edges.

(Fa: The case (switch) Structure

read (¢) ;
switch (¢)
{
case ‘N’:
z = 25;
case ‘Y’:
X = 50;
break;
default:
X = 0;
break;
}
print (x);

Draw the graph
and label the
edges.

rint (x);

to the next case

Cases without breaks fall through

(FG: Exceptions (try/catch)

try
{
s = br.readlLine();
1f (s.length() > 96)
throw new Exception
(“too long”);
1f (s.length() == 0)
throw new Exception
(“too short”);
+ (catch I0Exception e) {
e.printStackTrace();
} (catch Exception e) {
e.getMessage();
ks

return (s);

s = br.readLine()

IOException

length <= 96

e.printStackYrace() lengt 0
>

Draw the graph
and label the
edges.

Example Control Flow — Stats

public static void computeStats (int [] numbers)

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;

Eor (int 1 = 0; 1 < length; 1++) Draw the graph
. sum += numbers [1]; and label the
med = numbers [length / 2]; edges.

mean = sum / (double) length;

varsum = 0; _ :
for (int 1 = 0; 1 < length; 1++)

{
varsum = varsum + ((numbers [1] - mean) * (numbers

[1] - mean)),
}

var = varsum / (length - 1.0);

sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: "+ meang;
System.out.println g"median: " + med);
System.out.println ("variance: "+ varj;
System.out.println ("standard deviation: " + sd);

public static void computeStats (int [] numbers)

{

int-tength = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;

/. : Se—
for (1nt 1 = 0y 1 < Tengtiny—t-2
1

}

imed = numbers | Length / ¢
mean = sum / (double) length

sum += numbers [1];

varsum = 0;

for (int 1 = Q0j)-t+—<-length: 1++) \

i | et

varsum = varsum + ((numbers [1] - mean) * (numbers [1] =

}
var=-varsum / (length - 1.0);

sd = Math.sqgrt (var);

System.out.println "length "+ 1°n*+h);
System.out.println g mean: " + mecn
System.out.println ("median: " + medy;
System.out.println ("varlance° "+ var);
System.out.println ("standard deviation: " + sd);

1 >=| length

12

Control Flow TRs and Test Paths - EC

|
Edge Coverage
TR Test Path
:1I2- [1121314131516171618]

Write down the _ §
TRs for EC 12,3

e -:314: Write down test
' 13 5] paths that tour
° - [4I 3] all edges.
~[5,6]
G.[6,7]
H.[6,8]
.[7,6]

O O o =

(ontrol Flow TRs and Test Paths -

Edge-Pair Coverage

i

EP(

Write down the
TRs for EPC.

IR

1,2,3.
12,3,4
12,3,5
13,4,3
E[3 506]
F14,3,5]
G.[56,7]
H.[5,6,8]
.[6,7,6]
J.[7,6,8]
K.[4,3,4]
L.[7,6,7]

UC.UU.:D

Test Path
.[1,2,3,4,3,5,6,7,6,8] | Write down test
ii.[1,2,3,5,6,8] paths that tour
ii.01,2,3,4,3,4,3,56,7, |4/ledge pair.

6,7,6,8]
TP TRs toured sidetrips
i ABBEE G C,H
i KCEH
i %DEFGIJKL CH

L

A minimal set of TPs is
cheaper.

TP iii makes TP i redundant.

(ontrol Flow TRs and Test Paths -

Prime Path Coverage

PP(

Write down the
TRs for PPC.

TR Test Path
A[3,4,3 1.[1,2,3,4,3,56,7,6,8]
B.[4,3,4] i.01,2,3,4,3,4,3, pTT—
C.[7,6,7] 3,0,7,6,7,6,8] paths that tour
D.[7,6,8] ii.[1,2,3,4,3,5,6,8] all prime paths.
F16,7,6] v.[1,2,3,5,6,7,6,8]
F11,2,3,4] v.[1,2,3,5,6,8]
G.[4,3,5,6,7] TP TRs toured sidetrips
H.[4,3,506,8] — =" DEFG H,1,J
.11,2,3,5,6,7] = | ABCDEFG H,1,J
101,2,3,5,6,8] // - T J

- / v D, E,F | J
TP ii makes
TP i redundant. v J

Data Flow Coverage for Source

def: a location where a value is stored into memory
-x appears on the left side of an assignment (x=44;)
-x is an actual parameter in a call and the method changes its value
-x is a formal parameter of a method (implicit def when method starts)

-x is an input to a program

use: a location where variable's value is accessed
-x appears on the right side of an assignment
-x appears in a conditional test
-x is an actual parameter to a method
-x is an output of the program

-x is an output of a method in a return statement

If a def and a use appear on the same node, then it is only a DU-pair if the def occurs after the use and
the node isin a loop.

Example Data Flow — Stats

public static void computeStats (int [] numbers)

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0.0;
Eor (int 1 = 0; 1 < length; i++)

sum += numbers [1];

med = numbers [length / 2]
mean = sum / (double) length;

varsum = 0.0; . :
for (int 1 = 0; 1 < length; 1++)

{

y varsum = varsum + ((numbers [1] - mean) * (humbers [1] - mean));
var = varsum / (length - 1);

sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: "o+ meang;
System.out.println ("median: "+ med);

System.out.println ("variance: o "+ var);

System.out.println ("standard deviation: " + sd);

17

Control Flow Graph for Stats

Annotate with the
statements ...

sum += numbers [1

1++

¢ (numbers)
sum = 0
length = numbers.length

med = numbers [length / 2]
mean = sum / (double) length
varsum = @

i=0

1 >= length

varsum / (length - 1.0)
Math.sgrt (var)
varsum = .. print (length, mean, med, var, sd)

1++

18

(FG for Stats — with defs and uses

def (1) = { numbers, sum, length }
={numbers}

Turn the annotations into
def and use sets ...

use (3,5)={i, length }

def (5)
use (5)

{ med, mean, varsum, i }
{ numbers, length, sum }

def (4) ={sum,i}

{'sum, numbers, i}

use (6,8) ={i, length }

def (8)
use (8)

{var,sd}
{varsum, length, mean,
med, var, sd } T

def (7) ={ varsum, i}
= { varsum, numbers, i, mea

Det and Uses tables for Stats

Node Def Use Edge Use
1 { numbers, sum, { numbers } (1,2)
Ie.ngth} 2.3)
;23 U} (3,4) {i,length}
7 : — (4,3)
{sum,i} { numbers, i, sum} 35) [Tength)
5 { med, mean, { numbers, length, sum }
varsum, i } (5,6)
6 (6,7) {i,length}
7 {varsum, i} {varsum, numbers, i, mean } (7, 6)
8 [var, sd } { varsum, length, var, mean, (6,8) Ll length }
med, var, sd }

DU Pairs for Stats

defs come before uses, do not count

—

variable DU Pairs ET)IIEIR
numbers (1,4)(1,5)(1,
med (5, 8) /
var (8, 8) /| defsafter use in loop, these are
valid DU pairs
sd (8,8) /
mean .70, 8)/\/ — | No def-clear path ...
sum (1,4)(1, 504, 4) (4, 5) / different scope for i
varsum (57)(58(7,7)).8) |
i (2,4)(23,4)) (2, (3,5) 2 AHEAbHHEAGSN-
/ , No path through graph from nodes 5 and
~—|7t040r3

21

DU Paths for Stats

variable DU Pairs DU Paths
numbers (1,4) [1,2,3,4]
(1,5) [1,2,3,5]
(1,7) [1,2,3,5,6,7]
length (1,5) [1,2,3,5]
(1,8) [1,2,3,5,6,8]
(1,(3,4)) [1,2,3,4]
(1,(3,5)) [1,2,3,5]
(1,(6,7)) [1,2,3,5,6,7]
(1,(6,8)) [1,2,3,5,6,8]
med (5, 8) [5,6,8]
var (8,8) No path needed
sd (8, 8) No path needed
sum (1,4) [1,2,3,4]
(1,5) [1,2,3,5]
(4,4) [4,3,4]
(4,5) [4,3,5]

variable DU Pairs DU Paths
mean (5,7) [5,6,7]
(5, 8) [5,6,8]
varsum (5,7) [5,6,7]
(5, 8) [5,6,8]
(7,7) [7,6,7]
(7,8) [7,6,8]
(2,4) [2,3,4]
(2,(3,4) [2,3,4]
(2,(3,5)) [2,3,5]
(4,4) [4,3,4]
(4,(3,4)) [4,3,4]
(4,(3,5)) [4,3,5]
(5,7) [5,6,7]
(5,(6,7)) [5,6,7]
(5,(6,8)) [5,6,8]
(7,7) [7,6,7]
(7,(6,7)) [7,6,7]
(7,(6,8)) [7,6,8]

22

DU Pairs for Stats — No Dups

There are 38 DU paths for Stats, but only 12 unique.

1[1,2,3,4] [4,3,4)%
11,2,3,5] [4,3,5]
11,2,3,5,6,7] [5,6,7]
11,2,3,5,6,8] [5,6,8]
12,3,4] [7,6,7 i
12,3,5] [7,6,8]

2 require at least two iterations of a loop

Summary

Applying the graph test criteria to control flow graph is relatively straightforward
- Most of the developmental research work was done with CFGs

Afew subtle decisions must be made to translate control structures into the graph

Some tools will assign each statement to a unique node
- These slides and the book use basic blocks
- Coverage is the same, although the bookkeeping will differ

