
Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

Intro to Software Testing
chapter 6

Input Space Coverage
(continued)

https://go.gmu.edu/SWE637

Input Space Coverage

2

Structures for
Modeling Software

Input Space Graphs

Source

Design

Specs

Use Cases

Logic

Source

FSMs

Specs

DNF

Syntax

Source

Models

Integration

Input

Input Domains
Input domain: all possible inputs to a program

- most domains are so large they are effectively infinite

Input parameters define the scope of the input domain
- parameter values to a method
- data from file
- global variables
- user inputs

We partition input domains into regions called blocks
Choose at least one value from each block

3

Input domain: Alphabetic letters
Partitioning characteristic: Case of letter

Block 1: upper case
Block 2: lower case

Partitioning Input Domains
Given domain D, there is a partition scheme q of D such that:

• Partition q defines a set of blocks
Bq = b1, b2, …, bQ

• The partition must satisfy two properties
• Blocks must be disjoint (no overlaps)
• Blocks must be complete (cover the domain D)

4

b1
b3

b2

Input Characteristics
A feature or quality belonging typically to a person, place, or thing and serving

to identify it.

Input: people

5

Concrete

Characteristics: hair color, major
Blocks:
A = (1) red, (2) black, (3) brown, (4) blonde, (5) other
B = (1) cs, (2) swe, (3) ce, (4) math, (5) ist, (6) other

Abstraction

A = [a1, a2, a3, a4, a5]
B = [b1, b2, b3, b4, b5, b6]

Modeling the input domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters, & characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to choose combinations of values

Step 5: Refine combinations of blocks into test inputs
6

Modeling the input domain
Step 1: Identify testable functions

- Individual methods have one testable function
- Methods in a class often have the same characteristics
- Programs have more complicated characteristics, modeling
documents like UML can be used to design characteristics
- Systems of integrated hardware and software components can have
many testable functions – devices, operating systems,
hardware platforms, browsers, etc.

7

Modeling the input domain
Step 2: Find all the parameters

- Often straightforward or mechanical
• Preconditions and postconditions
• Relationships among variables
• Special values (zero, null, etc.)

- Do not use program source code, characteristics should be based on the input
domain
- Methods: parameters and state variables
- Components: parameters to methods and state variables
- Systems: all inputs, including files and databases

8

Modeling the input domain
Step 3: Model the input domain

- The domain is scoped by the parameters
- The structure is defined by characteristics
- Each characteristic is partitioned into sets of blocks
- Each block represents a set of values
- This is the most creative design step in ISP
• Better to have more characteristics and fewer blocks; leads to fewer tests
• Strategies include valid/invalid/special values, boundary values, “normal”

values
9

Modeling the input domain
Step 4: Apply a test criterion to choose combinations of values

- A test input has one value for each parameter
- There is one block for each characteristic
- Choosing all combinations is usually infeasible

• Coverage criteria allow subsets to be chosen

10

Modeling the input domain
Step 5: Refine combinations of blocks into test inputs

- Choose appropriate values for each block
- Combinatorial test optimization tools can help

These tools dramatically reduce the number of tests

11

Choosing values (6.2)
After partitioning characteristics into blocks, testers design tests by combining

blocks from different characteristics
–3 Characteristics (abstract): A, B, C
–Abstract blocks: A = [a1, a2, a3,a4]; B = [b1, b2]; C = [c1, c2,c3]

A test starts by combining one block from each characteristic
–Then values are chosen to satisfy the combinations

We use criteria to choose effective combinations

12

Choosing values (6.2)

13

Each Choice Coverage (ECC) – one value
from each characteristic must be used in
at least one test

DE
FI

NI
TI

ON

All Combinations Coverage (ACoC)
– all combinations of blocks from all
characteristics must be coveredDE

FI
N
IT
IO
N

Base Choice Coverage (BCC) – a base choice block is chosen for each
characteristic, and a base test is formed by using the base choice for
each characteristic. Subsequent tests are chosen by holding all but one
base choice constant and using each non-base choice in each other
characteristic.

DE
FI

NI
TI

ON

PWC Criterion for Choosing Values

14

We can combine values from one block with values from other blocks

Pair-Wise Coverage (PWC) – a value from
each block for each characteristic must be
combined with a value from each block of
every other characteristic

DE
FI

NI
TI

ON

PWC Example

16

TR = { (a1, b1, c*), (a1, b2, c*),
(a1, b*, c1), (a1, b*, c2),
(a2, b1, c*), (a2, b2, c*),
(a2, b*, c1), (a2, b*, c2),
(a3, b1, c*), (a3, b2, c*),
(a3, b*, c1), (a3, b*, c2),
(a*, b1, c1), (a*, b1, c2),
(a*, b2, c1), (a*, b2, c2) }

We can satisfy all these TRs with
optimized combinations:
TR = { (a1, b1, c1),

(a1, b2, c2),
(a2, b2, c1),
(a2, b1, c2),
(a3, b1, c2),
(a3, b2, c1) }

(other combinations are possible)

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

BCC Criterion for Choosing Values

17

Use domain knowledge of the program to identify important values

Base Choice Coverage (BCC) – a base choice block is chosen for each
characteristic, and a base test is formed by using the base choice for
each characteristic. Subsequent tests are chosen by holding all but one
base choice constant and using each non-base choice in each other
characteristic.

DE
FI

NI
TI

ON

BCC Criterion for Choosing Values

19

The base test must be feasible, that is, all values in the base choice must be
compatible
Base choices can be:

• The most likely or most common values
• The simplest values
• The smallest values
• The first values in some logical ordering

Happy path tests make good base choices
The base choice is a crucial design decision

• Test designers should document why the base choice was selected
• A poor base choice can result in many infeasible combinations

BCC Example

20

TR = { (a1, b1, c1),
(a2, b1, c1),
(a3, b1, c1),
(a1, b2, c1),
(a1, b1, c2) }

Base test

Variations on A

Variation on B

Variation on C

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

Base choices

MBCC Criterion for Choosing Values

21

There can sometimes be more than one logical base choice for each
characteristic

Multiple Base Choice Coverage (MBCC) – at least one, and possibly
more, base choice blocks are chosen for each characteristic, and base
tests are formed by using each base choice for each characteristic at
least once. Subsequent tests are chosen by holding all but one base
choice constant and using each non-base choice in each other
characteristic.

DE
FI

NI
TI

ON

MBCC Example

23

TR = { (a1, b1, c1),
(a2, b1, c1),
(a3, b1, c1),
(a1, b2, c1),
(a1, b1, c2),
(a3, b1, c2),
(a1, b1, c2),
(a2, b1, c2),
(a3, b2, c2),
(a3, b1, c1) }

Characteristic Blocks

A a1 a2 a3

B b1 b2 --

C c1 c2 --

Multiple base choicesMultiple base choices

Base choice #1

Variations on A

Variation on B

Variation on C

Base choice #2

Variations on A

Variation on B

Variation on C

Substituting a3 in place
of a1 is not necessary
because a3 is also a
base choice and will
show up in a later TR

Substituting a3 in place
of a1 is not necessary
because a3 is also a
base choice and will
show up in a later TR

Constraints Among Characteristics

24

Some combinations are infeasible
• Can’t have “less than zero” and “scalene”

This is represented as constraints
Two general types of constraints

• A block from one characteristic cannot be combined with a specific block
from another

• A block from one characteristic can only be combined with a specific block
from another

Handling constraints depends on the criterion used
• ACC, PWC, TWC – drop the infeasible pairs
• BCC, MBCC – change a value to another non-base choice to find a feasible

combination

Characteristic b1 b2 b3 b4 b5 b6

A: size and contents list=null size=0 size=1
size>1
varied

unsorted

size>1
varied
sorted

size>1
all same

B: match
Element not

found Element found once
Element found
more than once -- -- --

Infeasible combinations: (Ab1, Bb2), (Ab1, Bb3), (Ab2, Bb2), (Ab2, Bb3), (Ab3, Bb3), (Ab6,Bb2)

Constraints Example

25

public boolean findElement (List list, Object element) {
// Effects: if list or element is null throw NullPointerException
// else element is in list return true
// else return false
...

}

Element cannot be in
a 1-element list more

than once

If a list has many of the
same element, we can’t find

it just once

Element cannot be in a
0-element list once (or

more than once)

Element cannot be in a
null list once (or more

than once)

ISP Criteria Subsumption

26

A test criterion C1 subsumes C2 if
and only if every set of test cases
that satisfies criterion C1 also
satisfies C2DE

FI
NI

TI
ON All Combinations

Coverage
(ACoC)

t-Wise
Coverage

(TWC)

Multiple Base Choice
Coverage
(MBCC)

Pair-Wise
Coverage
(PWC)

Base Choice
Coverage

(BCC)

Each Choice
Coverage

(ECC)

Subsumes all others

Subsumed by all others

ISP Summary

27

Fairly easy to apply, even with no automation

Convenient ways to increase or decrease test cases

Applicable to all levels of testing

Based on the input space of the program, not the implementation

Simple, straightforward, effective, and widely used!

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

Intro to Software Testing
Input Space Coverage

Extended Exercise

https://go.gmu.edu/SWE637

Today's Exercise
Textbook chapter 6.4

Design an input domain model (IDM) for the Java 7 Iterator interface
https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html has the full
version

Note that there may be some differences in the way I solve this exercise as
compared to the textbook – input domain modeling is a creative exercise!

29

https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html

Java 7 Iterator

30

public interface Iterator<E> {
/**
* Returns true if the iteration has more elements. (In other words,
* returns true if next() would return an element rather than throwing
* an exception.)
* @return true if the iteration has more elements
*/
boolean hasNext();

/**
* Returns the next element in the iteration.
* @return the next element in the iteration
* @throws NoSuchElementException - if the iteration has no more elements
*/
E next();

/**
* Removes from the underlying collection the last element returned by
* this iterator (optional operation). This method can be called only once
* per call to next(). The behavior of an iterator is unspecified if the
* underlying collection is modified while the iteration is in progress in
* any way other than by calling this method.
* @throws UnsupportedOperationException - if the remove operation is not
* supported by this iterator
* @throws IllegalStateException - if the next method has not yet been
* called, or the remove method has already been called after the last call
* to the next method
*/
void remove();

}

Task 1 – Determine characteristics
Step 1 – Identify characteristics in Table A
Step 2 – Develop characteristics
Step 3 – Associate methods and characteristics in Table B
Step 4 – Design a partitioning

31

Step 1. Identify Characteristics
Identify characteristics by considering

Functional units
Parameters
Return types and values
Exceptional behavior

32

Table A

Method Params Returns Values Exception Characteristic ID Covered by

Step 1. Identify Characteristics
hasNext() – returns true if collection has more elements
E next() – returns next element

Exception – NoSuchElementException if at end
void remove() – removes the most recent element returned by the iterator

Exception – UnsupportedOperationException
Exception – IllegalStateException
Note that the void return challenges us to verify the behavior indirectly

Parameters – internal state of the iterator
Internal state changes with next() and remove()
Modifying the underlying collection directly also changes the iterator state

33

Step 1. Document in Table A

34

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext

35

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state

Step 1. Document in Table A

36

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

Step 1. Document in Table A

37

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--

Step 1. Document in Table A

38

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

Step 1. Document in Table A

Step 1. Identify Characteristics
hasNext() – returns true if collection has more elements
E next() – returns next element

Exception – NoSuchElementException if at end
void remove() – removes the most recent element returned by the iterator

Exception – UnsupportedOperationException
Exception – IllegalStateException
Note that the void return challenges us to verify the behavior indirectly

Parameters – internal state of the iterator
Internal state changes with next() and remove()
Modifying the underlying collection directly also changes the iterator state

39

40

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next

Step 1. Document in Table A

41

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state

Step 1. Document in Table A

42

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null ? ? ? ?

Let’s leave this to your
groups…

Step 1. Document in Table A

Step 1. Identify Characteristics
hasNext() – returns true if collection has more elements
E next() – returns next element

Exception – NoSuchElementException if at end
void remove() – removes the most recent element returned by the iterator

Exception – UnsupportedOperationException
Exception – IllegalStateException
Note that the void return challenges us to verify the behavior indirectly

Parameters – internal state of the iterator
Internal state changes with next() and remove()
Modifying the underlying collection directly also changes the iterator state

43

44

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null ? ? ? ?

remove

Step 1. Document in Table A

45

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null ? ? ? ?

remove state

Step 1. Document in Table A

46

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null ? ? ? ?

remove state -- -- ? ? ? ?

Let’s leave this to your
groups…

Step 1. Document in Table A

Step 2. Develop Characteristics

47

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null ? ? ? ?

remove state -- -- ? ? ? ?

Hint – think about both normal and exceptional conditions; each method can
have more than one row for Exception, Characteristic, ID, and Covered By:

Table A

Method Params Returns Values Exception Characteristic ID Covered by

Method Params Returns Values

Normal … … …

Ex1 … … …

Ex2 … … …

Step 3. Associate Characteristics

48

Which characteristics are relevant for which methods?

Add or remove rows to the table as needed

Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values

Step 3. Associate Characteristics

49

How can we partition each characteristic?

Add or remove rows to the table as needed

Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values

Exercise 1
20 minutes to work

Develop characteristics
Associate characteristics with methods
Partition characteristics into blocks

15 minutes for debrief and discussion

50

Step 2. Develop Characteristics

51

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null ? ? ? ?

remove state -- -- ? ? ? ?

52

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null -- Returns a
non-null

object

C2 --

remove state -- -- ? ? ? ?

This characteristic forces useful TRs
for retrieving a non-null object and a

null object

Step 2. Develop Characteristics

53

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null -- Returns a
non-null

object

C2 --

remove state -- -- ? ? ? ?

What about exceptions for next()?

Step 2. Develop Characteristics

54

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null -- Returns a
non-null

object

C2 --

NoSuch
Element

-- -- C1

remove state -- -- ? ? ? ?

What about exceptions for
remove()?

Step 2. Develop Characteristics

55

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null -- Returns a
non-null

object

C2 --

NoSuch
Element

-- -- C1

remove state -- -- Unsupported
Op

Remove is
supported

C3 --

Step 2. Develop Characteristics

56

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null -- Returns a
non-null

object

C2 --

NoSuch
Element

-- -- C1

remove state -- -- Unsupported
Op

Remove is
supported

C3 --

IllegalState Remove
constraint
is satisfied

C4 --

meaning that next() has been called and
remove() has not already been called.

Step 2. Develop Characteristics

57

Table A

Method Params Returns Values Exception Characteristic ID Covered by

hasNext state boolean
true,
false

--
has more

values
C1 --

next state E E, null -- Returns a
non-null

object

C2 --

NoSuch
Element

-- -- C1

remove state -- -- Unsupported
Op

Remove is
supported

C3 --

IllegalState Remove
constraint
is satisfied

C4 --

These are the characteristics of
our IDM.

Step 2. Develop Characteristics

Step 3. Associate Characteristics

58

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values

Step 3. Associate Characteristics

59

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

Does remove() care whether there are more objects?
Maybe… we might think that removing the last object is
functionally different from removing an earlier object and

wish to explicitly test that case.

Step 3. Associate Characteristics

60

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

61

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

X X

Here we mean that remove() cares about whether next()
previously returned a non-null object.

Step 3. Associate Characteristics

62

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

X X

C3 Remove is supported

Step 3. Associate Characteristics

63

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

X X

C3 Remove is supported X

Step 3. Associate Characteristics

64

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

X X

C3 Remove is supported X

C4 Remove constraint is
satisfied

Step 3. Associate Characteristics

65

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

X X

C3 Remove is supported X

C4 Remove constraint is
satisfied

X

Step 3. Associate Characteristics

66

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X

C2 Returns a non-null
object

X X

C3 Remove is supported X

C4 Remove constraint is
satisfied

X

Step 3. Associate Characteristics

67

Which characteristics are relevant for which methods?
Table B

ID Characteristic hasNext() next() remove() Partition

C1 Has more values X X X {true, false}

C2 Returns a non-null
object

X X {true, false}

C3 Remove is supported X {true, false}

C4 Remove constraint is
satisfied

X {true, false}

Important: Partitions are not always
true/false, it just happens to make

sense with these.

Step 3. Associate Characteristics

END OF EXERCISE 1

68

Task 2 – Define Test Requirements

Step 1 – Select a coverage criterion, we’ll use base choice (BCC)
Step 2 – Identify a happy-path test for the base case in Table C
Step 3 – Identify test requirements (TRs)
Step 4 – Identify infeasible TRs
Step 5 – Refine TRs to remove infeasible cases

69

How to Refine Infeasible TRs
Assume the following characteristics:

Applying base choice coverage, we might select a base test
{ Chicken, Squash, Rice }

BCC requires that we vary each characteristic:
{F,S,R}, {L,S,R}, {C,A,R}, {C,E,R}, {C,S,B}, {C,S,P}

Assume that {F,S,R} is infeasible – BCC requires that we have a test with Fish, so keep Fish and try changing one (or
both) of the other characteristics – is {F,A,R} feasible? Is {F,S,P}? Maybe {F,S,B}?

If we can’t find any feasible combination that includes Fish, then we discard the TR
70

Characteristic b1 b2 b3

Protein Chicken Fish Lamb

Vegetable Asparagus Eggplant Squash

Starch Bread Rice Potato

Exercise 2
15 minutes to work

Create a happy-path base test
Build a set of base choice tests
Identify infeasible test requirements
Develop replacement test requirements for any infeasible test requirements

10 minutes for debrief and discussion

71

Step 2: Base Coverage Criterion
Create a happy-path base test for each method, then create
additional tests to satisfy base-choice coverage.

72

Table C

Method Characteristics TRs Infeasible TRs

hasNext() Fill in from table B

next() Fill in from table B

remove() Fill in from table B

Step 2: Base Coverage Criterion
Identify infeasible TRs

Are there invalid combinations? Refine them to create feasible
substitutes

73

Table C

Method Characteristics TRs Infeasible TRs

hasNext() Fill in from table B Inf.TR --> f.TR

next() Fill in from table B Inf.TR --> f.TR

remove() Fill in from table B Inf.TR --> f.TR

Create a happy-path base test for each method, then create
additional tests to satisfy base-choice coverage.

74

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1

next() C1, C2

remove() C1, C2, C3, C4

Recall that for remove(), C2 means that next() previously
returned a non-null object.

Step 2: Base Coverage Criterion

Create a happy-path base test for each method, then create
additional tests to satisfy base-choice coverage.

75

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1 T

next() C1, C2 TT

remove() C1, C2, C3, C4 TTTT

Step 2: Base Coverage Criterion

Add additional tests to satisfy base-choice coverage

Remember that you create additional tests by taking the base test and iterating
through other values for each of the characteristics

76

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1 T

next() C1, C2 TT

remove() C1, C2, C3, C4 TTTT

Step 3: Base Coverage Criterion

Identify infeasible TRs
Are there invalid combinations?

77

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1 { T, F }

next() C1, C2 { TT, FT, TF }

remove() C1, C2, C3, C4
{ TTTT, FTTT,
TFTT, TTFT,

TTTF }

Step 4: Base Coverage Criterion

Identify infeasible TRs
Are there invalid combinations?

78

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1 { T, F } --

next() C1, C2 { TT, FT, TF } FT

remove() C1, C2, C3, C4
{ TTTT, FTTT,
TFTT, TTFT,

TTTF }
FTTT

If C1=false indicates “no more values”, then
C2 “returned a non-null object” can not be

true.

Step 4: Base Coverage Criterion

If C1=false indicates “no more values”, then
C2 “returned a non-null object” can not be

true.

Refine the test requirements to eliminate infeasible cases

Follow the process described before the exercise

79

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1 { T, F } --

next() C1, C2 { TT, FT, TF } FT

remove() C1, C2, C3, C4
{ TTTT, FTTT,
TFTT, TTFT,

TTTF }
FTTT

Step 5: Base Coverage Criterion

Refine the test requirements to eliminate infeasible cases

80

Table C

Method Characteristics TRs Infeasible TRs

hasNext() C1 { T, F } --

next() C1, C2 { TT, FT, TF } FT -> FF

remove() C1, C2, C3, C4
{ TTTT, FTTT,
TFTT, TTFT,

TTTF }
FTTT -> FFTT

In test case “FT” we are varying C1 to false,
so we want to keep C1=F and change other

characteristics to try to make the test
feasible.

Step 5: Base Coverage Criterion

In test case “FT” we are varying C1 to false,
so we want to keep C1=F and change other

characteristics to try to make the test
feasible.

Replace infeasible TRs with feasible TRs

81

Table C

Method Characteristics TRs Infeasible TRs Refined TRs

hasNext() C1 { T, F } --

next() C1, C2 { TT, FT, TF } FT -> FF

remove() C1, C2, C3, C4
{ TTTT, FTTT,
TFTT, TTFT,

TTTF }
FTTT -> FFTT

Step 5: Base Coverage Criterion

Replace infeasible TRs with feasible TRs

82

Table C

Method Characteristics TRs Infeasible TRs Refined TRs

hasNext() C1 { T, F } -- { T, F }

next() C1, C2 { TT, FT, TF } FT -> FF { TT, FF, TF }

remove() C1, C2, C3, C4
{ TTTT, FTTT,
TFTT, TTFT,

TTTF }
--

{TTTT, FFTT,
TFTT, TTFT,

TTTF}

Step 5: Base Coverage Criterion

END OF EXERCISE 2

83

Task 3 – Automate Tests
We need an implementation of Iterator because Iterator is merely an
interface

ArrayList implements Iterator, so we can use ArrayList
for our testing

Create a test fixture with two variables
List of strings
Iterator for strings

@Before setup()
Creates a list with two strings
Initializes an iterator

84

Task 3 – Automate Tests
Example implementation framework

85

public class IteratorTest {

private List<String> list; // test fixture list
private Iterator<String> itr; // test fixture iterator

@Before public void setUp() // set up test fixture
{

list = new ArrayList<String>(); // create new ArrayList
list.add ("cat"); // append “cat”
list.add ("dog"); // append “dog”
itr = list.iterator(); // initialize the iterator

}

... // test implementations to be defined on upcoming slides
}

Exercise 3
10 minutes to work

Write tests for hasNext()
Write tests for next()
Write tests for remove()

No debrief, but answers will be posted

86

Task 3 – Automate Tests
Write tests for hasNext()

2 test cases

87

// Test 1 of hasNext(): testHasNext_BaseCase(): C1=T
@Test public void testHasNext_BaseCase()
{

...
}

// Test 2 of hasNext(): testHasNext_C1(): C1=F
@Test public void testHasNext_C1()
{

...
}

Task 3 – Automate Tests
Write tests for hasNext()

2 test cases

88

// Test 1 of hasNext(): testHasNext_BaseCase(): C1=T
@Test public void testHasNext_BaseCase()
{

assertTrue (itr.hasNext()); // list is not empty
}

// Test 2 of hasNext(): testHasNext_C1(): C1=F
@Test public void testHasNext_C1()
{

itr.next (); // consume “cat”
itr.next(); // consume “dog”
assertFalse (itr.hasNext()); // now list is empty

}

Task 3 – Automate Tests
Write tests for next()

3 test cases

89

// Test 1 of next(): testNext_BaseCase(): C1=T, C2=T
@Test public void testNext_BaseCase()
{

...
}

// Test 2 of next(): testNext_C1(): C1=F, C2=F
@Test(expected=NoSuchElementException.class)
public void testNext_C1()
{

...
}

// Test 3 of next(): testNext_C2(): C1=T, C2=F
@Test public void testNext_C2()
{

...
}

Task 3 – Automate Tests
Write tests for next()

3 test cases

90

// Test 1 of next(): testNext_BaseCase(): C1=T, C2=T
@Test public void testNext_BaseCase()
{

assertEquals ("cat", itr.next()); // list is not empty
}

// Test 2 of next(): testNext_C1(): C1=F, C2=F
@Test(expected=NoSuchElementException.class)
public void testNext_C1()
{

itr.next(); // consume “cat”
itr.next(); // consume “dog”
itr.next(); // throws NSE because list is empty

}

// Test 3 of next(): testNext_C2(): C1=T, C2=F
@Test public void testNext_C2()
{

list = new ArrayList<String>(); // create a new empty list
list.add (null); // add a null object
itr = list.iterator(); // reinitialize the iterator
assertNull (itr.next()); // verify that it is null

}

Write tests for remove()
5 test cases (1-3 shown)

91

// Test 1 of remove(): testRemove_BaseCase(): C1=T, C2=T, C3=T, C4=T
@Test public void testRemove_BaseCase()
{

...
}

// Test 2 of remove(): testRemove_C1(): C1=F, C2=F, C3=T, C4=T
@Test public void testRemove_C1()
{

...
}

// Test 3 of remove(): testRemove_C2(): C1=T, C2=F, C3=T, C4=T
@Test public void testRemove_C2()
{

...
}

Task 3 – Automate Tests

Task 3 – Automate Tests
Write tests for remove()

5 test cases (1-3 shown)

92

// Test 1 of remove(): testRemove_BaseCase(): C1=T, C2=T, C3=T, C4=T
@Test public void testRemove_BaseCase()
{

itr.next(); // consume “cat”
itr.remove(); // remove “cat”
assertFalse (list.contains ("cat")); // verify list does not contain “cat”

}

// Test 2 of remove(): testRemove_C1(): C1=F, C2=F, C3=T, C4=T
@Test public void testRemove_C1()
{

itr.next(); // consume “cat”
itr.next(); // consume “dog”
itr.remove(); // remove “dog”
assertFalse (list.contains ("dog")); // verify list does not contain “dog”

}

// Test 3 of remove(): testRemove_C2(): C1=T, C2=F, C3=T, C4=T
@Test public void testRemove_C2()
{

list.add (null); // append a null object to the list
list.add ("elephant"); // append “elephant” to the list
itr = list.iterator(); // reinitialize the iterator
itr.next(); // consume “cat”
itr.next(); // consume “dog”
itr.next(); // consume null; iterator not empty
itr.remove(); // remove null from list
assertFalse (list.contains (null)); // verify list does not contain null

}

Write tests for remove()
5 test cases (4-5 shown)

93

// Test 4 of remove(): testRemove_C3(): C1=T, C2=T, C3=F, C4=T
@Test(expected=UnsupportedOperationException.class)
public void testRemove_C3()
{

...
}

// Test 5 of remove(): testRemove_C4(): C1=T, C2=T, C3=T, C4=F
@Test (expected=IllegalStateException.class)
public void testRemove_C4()
{

...
}

Task 3 – Automate Tests

Task 3 – Automate Tests
Write tests for remove()

5 test cases (4-5 shown)

94

// Test 4 of remove(): testRemove_C3(): C1=T, C2=T, C3=F, C4=T
@Test(expected=UnsupportedOperationException.class)
public void testRemove_C3()
{

list = Collections.unmodifiableList (list); // does not support remove()
itr = list.iterator(); // reinitialize the iterator
itr.next(); // consume “cat” so C4=true
itr.remove(); // remove “cat”, throws UOE

}

// Test 5 of remove(): testRemove_C4(): C1=T, C2=T, C3=T, C4=F
@Test (expected=IllegalStateException.class)
public void testRemove_C4()
{

itr.remove(); // invalid remove, throws ISE
}

END OF EXERCISE 3

95

