Iwntro to Software Testing
chapter B.2

Syntactic Logic Coveraoe
Disjuuctive Normal Form (DNF)

Dr. Brittany Johnson-Matthews
(Dr. B for short)

hitps://go.gmu.edu/SWE63/
Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Logic Coverane

Structures for
Modeling Software

Input Space

Applied to

Applied to

Applied to

Integration

What is DPNF?

Disjunctive Normal Form (DNF) is a common representation for Boolean functions
Slightly different notation and terminology
Literal: a clause orthe negation of a clause: a, a

Term: is 5 set of literals connected by logical and, represented by adjacency, for example:

a A b becomes ab
—a A b becomes ab
—a A =b becomes ab

Terms are also called implicants, because it a single term is true, it implies that the entire
predicate Is true

Predicate: 5 sct of terms connected by or, which is represented by +, for example:
aV b becomesa+ b

DPNF Fault Classes

There are 9 types of syntactic faults on DNF predicates; we want criteria that are
guaranteed to find them.

Intended Expression Faulty
Expressmn

ENF: expression negation fault = ab+c f =ab+c
TNF: term negation fault f = ab+c f = a_ +c
TOF: term omission fault f =ab+c f = ab
LNF: literal negation fault f=ab+c f=ab+c
LRF: literal reference fault f = ab + bcd f = ad + bcd
LOF: literal omission fault f=ab+c f=a+c
LIF: literal insertion fault f=ab+c f = ab+ bc
ORF -+ operator reference fault f=ab+c f = abc

ORF*: operator reference fault f =ab+c f=a+b+c

DPNF Fault Class Subsumption

LIF: Literal Insertion Together, these
Fault h subsume
all others
LRF: Literal Reference
Fault

TOF: Term Omission LOF: Literal Omission
Fault Fault

LNF: Literal Negation
Fault

ORF+: Operator ORF*: Operator
Reference Fault Reference Fault

TNF: Term Negation
Fault

ENF: Expression

Negation Fault Subsumed by all others

Iwplicant Coveraoge

An obvious coverage thought is to make each implicant (term) evaluate to true

This only tests true cases for the predicate f, so we include DNF negation of the entire
predicate f

Implicant Coverage (IC) - Given DNF representation of a

predicate £ and its negation f, for each implicant in f and f, TR
contains the requirement that the implicant evaluate to true.

DEFINITION

xamples: f = ab + be, f = b+ ac

mplicants: {ab, b¢,b, ac}

Possible test set: { TTF FFT)

Cis a relatively weak criterion, not guaranteed to find any of the DNF fault classes

Improving on Implicant Coverage

Additional definitions:

Proper subterm: 5 term with one or more clauses removed
abc has proper subterms, @, b, ¢, ab, ac, bc

Prime implicant: an implicant such that no proper subterm is an implicant
Given f = ab + abc:

ab is a prime implicant, but abe is not, because proper subterm ac is an implicant (because the
predicate can be simplified to f = ab + ac, and we'll soon see how to determine that)

Redundant implicant: an implicant that can be removed without changing the value of the
predicate

Given f = ab + ac + bc,implicant ab is redundant because the predicate can be simplified to
ac + bc (again, we'll soon see how to determine that)

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + bc¢

~

. . Values use Grey code
(" Group dlauses into pairs (or /

. . ordering (rather than binary
one pair and one single counting) where only one
clausg)and populate the ab truth value changes at a time

L posabsav;aséis of the 00 01T 11 10 across columns or down rows.
] /
C Populate the truth table where
W true values are listed as "t";

false values are (by
convention) simply left blank.

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + bc¢

~

. . Values use Grey code
(" Group dlauses into pairs (or /

. . ordering (rather than binary
one pair and one single counting) where only one
clausg)and populate the ab truth value changes at a time

L posabsav;aséis of the 00 01T 11 10 across columns or down rows.
0 t /
C Populate the truth table where
W t true values are listed as "t";

false values are (by
convention) simply left blank.

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + bc

~

. . Values use Grey code
(" Group dlauses into pairs (or /

. . ordering (rather than binary
one pair and one single counting) where only one
clause)and populate the ab truth value changes at a time

L posabsav;asueis of the 00 01T 11 10 across columns or down rows.
0 t /
C Populate the truth table where
W { { true values are listed as "t";

false values are (by
convention) simply left blank.

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + b€

~

. : Values use Grey code
(" Group dlauses into pairs (or /

. . ordering (rather than binary
one pair and one single counting) where only one
clause)and populate the ab truth value changes at a time

L posabsav;asueis of the 00 01T 11 10 across columns or down rows.
0 L]t <
C Populate the truth table where
W |t true values are listed as "t";

false values are (by
convention) simply left blank.

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + bc
Simplitiesto f = ac + bc

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + bc
Simplitiesto f = ae + bc

ab
00 01 11 10 Select maximal rectangles
in the table, sized 2™ by 2"
0 t |t (1x1,1x2, 262, 2x4, 4x4,
C 4x8, etc.); it's okay if they
W t |t overlap

/

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplity DNF predicates

Given predicate f = ab + ac + bc
Simplitiesto f = ac + be

ab
00 01 11 10 Select maximal rectangles
in the table, sized 2™ by 2"
0 t |t (1x1,1x2, 262, 2x4, 4x4,
C 4x8, etc.); it's okay if they
W t |t overlap

/

K-Waps are Toroidal

K-Maps are a torus, not a plane
The bottom row wraps around to the top row
The right column wraps around to the left column

.0010 0110] 1110

By Jochen Burghardt - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=28286441

15

K-Waps are Toroidal

Given the predicate f = bd

Draw the K-map

ab
0 01 11 10

K-Waps are Toroidal

Given the predicate f = bd

Draw the K-map

ab)
00 01 11 10 These 4 true values are a
single 2xZ rectangle!
00 | 1 [

o /

Prime Iwmplicants

Given the predicate f = abc + abd + abed + abced + acd

Draw the K-map

Prime Iwmplicants

Given the predicate f = abc + abd + abed + abced + acd

Draw the K-map
ab Not prime implicants;

00 01 11 10 abd (parto
abed (part olbed)
abed (parto ad)
acd (part o

{ Minimal DNF representation: f = ad + bed }

19

Minimmal Representation

A minimal DNF representation is one with only prime, non-redundant implicants

Not minimal: f = abc + abd + abcd + abcd + acd
Minimal (simplified) equivalent from previous slide: f = ad + bed

ab
0o 01 11 10

Determivnatiov

Given predicate f = b + @c +}@e, suppose we want to identify when b determines f

Draw K-map

ab
00 01 11 10

Determivnatiov

Given predicate f = b + @c + ac, suppose we want to identify when b determines f

Draw K-map
\
If two cells adjacent to the
boundary have different
[dentify the boundaries W ab values for f, then b determines
where b changes value. 00101 17 ‘ 10 fforthose two cells.
/
! t]t]t]
Lot
| |

{ b determines f forac + ac }

22

Predicate Negatiow

Given predicate f = ab + be, suppose we want to negate f

Draw the K-map for Negate all the cells in
| the K-map.
ab
00 01 11 10 00 01 11 10
0 { 0 P [
C C
W L]t 1 = [

{ Write down the result: £ = [l + @€

True and False Points

Given f = ab + cd

ab True points(_Jare those cells in
oo the K-map where the value of the
predicate is true

False points(_] arc those where
the value is Talse

Unidue True Points

A unique true point (UTP) with respect to a given implicantis an assignment
of truth values such that

The given implicant s true

All other implicants are false

Thus a unique true point test focuses on only one implicant

Uidue True Points (UWTPs)

Given f = ab + cd

ab Unigue true points forjab
AU TTFF, TTFT, TTTF

.) Unique true points forled
@ FFTT, FTTT, TFTT

RN isatrue point, but not 3

: o unique true point

WMultiple Unigue True Point Coverage

Aminimal representation guarantees the existence of at least one unigue true point for
each implicant

Multiple Unique True Point Coverage (MUTP) - Given 3
minimal DNF representation of a predicate f, for each implicant i
choose unique true points (UTPs) such that clauses not in i are true
and false.

DEFINITION

Multiple Unidque True Points

Given f = ab + cd

Choose unique true points for each implicant such that literals not in the implicant take on
values true and false

ab Forimplicant ab, choose
00 01 11 10 'ITFTand
00 {
cd ?1 t tT] Forimplicant ed, choose
; FTTT hnolTFIT
MUTP test set:

| TTFT, TTTF, FTTT, TFIT |)

WMUTP Infeasibility

Given the predicate f =

ab

L be |

mplicants are { ab, bc }

Both implicants are prime
either implicant is redundant

29

WMUTP Infeasibility

Unique true points required by MUTP

ab: {111} causes ab to be true and be to be false

But there's no way to also make clause ¢ both true and false while keeping the implicants true and false as required by MUTP, so
MUTP is infeasible

bc: {F1f}causes ab to befalse and be to be true

But there's no way to also make clause a both true and false while keeping the implicants true and false as required by MUTP, so
MUTP is infeasible

30

WMUTP Fault Detection

Now we need a way to find all
literal omission faults (LOFs)

and/or operator reference
LRF: Literal Reference faults (ORF*s)

LIF: Literal Insertion
Fault

Fault

)

TOF: Term Omission LOF: Literal Omission
Fault Fault

LNF: Literal Negation
Fault

ORF+: Operator ORF*: Operator
Reference Fault Reference Fault

TNF: Term Negation
Fault

ENF: Expression
Negation Fault

31

Near False Points and CUTPNFP

A near false point (NFP) with respect to a clause € inimplicant i is an assignment of
truth values such that fis false, but it €is negated and all other clauses are left unchanged,
then i and thus Fevaluates to true

At a near false point, € determines f

Corresponding Unique True Point and Near False Point
Pair Coverage (CUTPNFP) - Given a minimal DNF
representation of a predicate £, for each clause €in each implicant i
TR contains a unique true point for i and a near false point for ¢
such that the points difier only in the truth value of c.

DEFINITION

CUTPNFP Example

Given f = ab + cd

For each literal ¢ ineach implicant i, choose a unigue true point for i and a near false point for ¢
in i such that only the value of ¢ changes

For clause @ in ab, choose UTP and NFP
ab TTFF and FTFF, or
00 01 11 10 @anc E or
00 f TITF and FTTF

For clause b in ab, choose UTP and NFP
01 t /
[— D TTFF ond TFFF, or

ottt TTFT and TFET) of
0 t TITF and TETF

We don't have to pick the same UTP fora and b,
but we can to reduce test cases.

33

CUTPNFP Example (cont’d)

Given f = ab + cd

For each literal ¢ ineach implicant i, choose a unigue true point for i and a near false point for ¢
in i such that only the value of ¢ changes

For clause ¢ in ed. choose UTP and NFP

ab FFTT and FFFT o
o0 1110 FTTT hnd [FTFT) or
00 f TFTT ond TFFT
0 D t For clause din ed, choose UTP and NFP
cd FFTT and FFTF or
i i FITT)0 {FITE) or
o O] TFTT 2nd TFTF

We don't have to pick the same UTP for cand d,
but can to reduce test cases.

34

CUTPNFP Example (cont’d)

Given f = ab + cd

For each literal ¢ ineach implicant i, choose a unigue true point for i and a near false point for ¢
in i such that only the value of ¢ changes

ab For clause @ in ab, choose UTP and NFP
00 01 11 10 TTFT and FTFT
00 t For clause bin ab, choose UTP and NFP
TTFT and TFFT
071 t For clause ¢in ed, choose UTP and NFP
cd e Tt 1t FTTT 2nd FTFT
For clause d in ed choose UTP and NFP
10 t FTTT and FTTF

TR = { TTFT, FTFT, TFFT, FTTT, FTTF |

CUTPNFP Fault Detection

LIF: Literal Insertion
Fault

Fault

TOF: Term Omission
Fault

LNF: Literal Negation

Fault

ORF+: Operator
Reference Fault

TNF: Term Negation

Fault

ENF: Expression
Negation Fault

LRF: Literal Reference

LOF: Literal Omission

Fault

ORF*: Operator
Reference Fault

-

o

s there a way to increase the
feasibility so that more
predicates can be adequately
tested?

~

J

36

WMultiple Near False Point Coverage

We saw earlier that MUTP can easily be infeasible in its entirety, and the same is
true of CUTPNFP

Multiple Near False Point Coverage (MNFP) - Given a
minimal DNF representation of a predicate f, for each clause € in
each implicant i, TR contains near false points for ¢ such that the
clauses not in i take on values true and false.

DEFINITION

MNFP Example

Given f = ab + cd
For each literal € in each implicant i, choose near false points such that the clauses notin i take
on values true and false.

ab For clause ain ab, choose N FTFT kno
00 01 11 10 \F
00 t ~or b in ab, choosd TEFT nleFTF
e ne orein ed, choosd FTFTjind TEET
cd et ¢ Fordin ed, choosd FTTFhnd TFTF
ol O] MNFP fest set:

| TFTF, TFFT, FTTF, TFTF |

38

MUMCUT

We can combine the previous three criteria (MUTP, CUTPNFP. and MNFP)

MUTP, MNFP, and CUTPNFP Coverage (MUMCUT) - Given
a minimal DNF representation of a predicate f, apply MUTP
CUTPNFP and MNFP

DEFINITION

This combination detects all fault classes even when one (or more) of the

constituent criteria are infeasible
However, this IS a very expensive criterion

WMinimal-WMUMCUT Criteriov

For each term

Minimal-MUMCUT uses
feasibility analysis, and adds e ves (O
CUTPNFP and MNFP only Feasible?

when necessary

For each literal in

term

Guarantees detection of LIF,
RF. and LOF fault types, thus S Ll
covers all 9 fault types

Test set = MUTP
+ MNFP

40

