Intro to Software Testing Chapter 8.1.4 \& 8.1.5

Logic Coverage

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann \& Jeff Offutt

Active Clauses

Determination

Clause c_{j} determines the value of its predicate when the other clauses have certain values

If c_{i} is changed, the value of the predicate changes
c_{i} is called the major clause
Other clauses are minor clauses

This is called making the clause active

Determining Predicates

$P=A \vee B$
if $B=$ true,p is always true.
so if $B=$ false, A determines p.
if $A=$ false, B determines p.

$\mathbf{P}=\mathbf{A} \wedge B$
if $B=$ false, p is always false.
so if $B=$ true, A determines p.
if $A=$ true, B determines p.

- Goal : Find tests for each clause when the clause determines the value of the predicate

Infeasibility \& Subsumption (8.1.4)

Consider the predicate:

$$
(a>b \wedge b>c)
$$

Realize the abstract test tt into a concrete test by finding values for a, b, and c that create the truth assignments $t t$

$$
a=9, b=7, c=5
$$

Now consider the predicate:

$$
(a>b \wedge b>c) \vee c>a
$$

Realize the abstract test ttt into a concrete test by finding values for a, b, and c that create the truth assignments ttt

> Impossible!

- Infeasible test requirements are recognized and ignored
- Recognizing infeasible test requirements is generally undecidable
- Thus usually done by hand

Logic Criteria Subsumption

Making Clauses Determine a Predicate

Three techniques

1. Informal by inspection

- This is what we've been doing
- Fast, but mistake-prone and does not scale-for experts

2. Tabular method

- Very simple by hand
- Few mistakes, slower, scales well to 5 or 6 clauses

3. Definitional method

- More mathematical
- Scales arbitrarily

Tabular Method

Find pairs of rows in the truth table

	\mathbf{a}	\mathbf{b}	$\mathrm{P}=\mathrm{a} \wedge \mathrm{b}$	P_{a}	P_{b}
\mathbf{I}	\mathbf{T}	\mathbf{T}	\mathbf{T}		
2	\mathbf{T}	\mathbf{F}	\mathbf{F}		
3	\mathbf{F}	\mathbf{T}	\mathbf{F}		
4	\mathbf{F}	\mathbf{F}	\mathbf{F}		

For Pa, find a pair of rows where

- $\quad \mathbf{b}$ is the same in both
- a is different
- $\quad \mathbf{P}$ is different

For Pb , find a pair of rows where

- a is the same in both
- $\quad b$ is different
- $\quad \mathbf{P}$ is different

Tabular Method

Find pairs of rows in the truth table

	a	b	$\mathrm{P}=\mathrm{a} \wedge \mathrm{b}$	ρ_{a}	ρ_{b}
1	T	T	T		
2	T	F	F		
3	F	T	F		
4	F	F	F		

Now do the same for "or"

	a	b	$\mathrm{P}=\mathrm{a} \vee \mathrm{b}$	Pa	Pb
1	\mathbf{T}	\mathbf{T}	\mathbf{T}		
2	\mathbf{T}	F	\mathbf{T}		
3	F	T	T		
4	F	F	F		

For Pa, find a pair of rows where

- $\quad \mathbf{b}$ is the same in both
- a is different
- $\quad \mathbf{P}$ is different

For Pb , find a pair of rows where

- a is the same in both
- $\quad b$ is different
- $\quad \mathbf{P}$ is different

In-class Exercise

Tabular method
Use the tabular method to solve for Pa, Pb, and Pc . Give solutions as pairs of rows.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{a} \wedge \mathbf{(b} \vee \mathbf{c})$	\mathbf{P}_{a}	P_{b}	$\mathbf{P}_{\mathbf{c}}$
\mathbf{I}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}			
2	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}			
3	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}			
4	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}			
$\mathbf{5}$	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}			
$\mathbf{6}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}			
$\mathbf{7}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}			
$\mathbf{8}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}			

In-class Exercise

$b \& c$ are the same, a differs, and p differs ... thus TTT and FTT cause a to determine the value of p

Again, b \& c are the same, so TTF and FTF cause a to determine the value of p

Finally, this third pair, TFT and FFT, also cause a to determine the value of p

For clause b, only one pair, TTF and TFF cause b to determine the value of p

Tabular method

> Likewise, for clause c, only one pair, TFT and TFF, cause c to determine the value of p

	a	b	c	$a \wedge(b \vee c)$	Pa	P_{b}	P_{c}
I	T	T	T	T	E		
2	T	T	F	T	E	E	
3	T	F	T	T	-		-
4	T	F	F	F		\cdots	c
5	F	T	T	F			
6	F	T	F	F			
7	F	F	T	F			
8	F	F	F	F			

Three separate pairs of rows can cause a to determine the predicate.

Only one pair each for b and c.

Definitional Method

Scales better (more clauses), requires more math Definitional approach:

- $\boldsymbol{p}_{\mathbf{c}=\text { true }}$ is predicate p with every occurrence of c replaced by true
- $\boldsymbol{p}_{\text {c=false }}$ is predicate p with every occurrence of c replaced by false

To find values for the minor clauses, connect $\boldsymbol{p}_{\boldsymbol{c}=\text { true }}$ and $\boldsymbol{p}_{\boldsymbol{c}=\boldsymbol{f a l s e}}$ with exclusive $O R$

$$
p_{c}=p_{c=\text { true }} \oplus p_{c=\text { false }}
$$

After solving, $\boldsymbol{p}_{\boldsymbol{c}}$ describes exactly the values needed for \boldsymbol{c} to determine \boldsymbol{p}

Definitional Method Examples

$\quad \frac{p=a \vee b}{}$
$p_{a}=p_{a=\text { true }}^{\oplus} \oplus p_{a=\text { false }}$
$=($ true $\vee b) X O R($ false $\vee b)$
$=$ true XOR b
$=!b$

Definitional Method Examples

$$
\begin{aligned}
& \quad \frac{p=a \vee b}{p_{a}}=p_{a=\text { true }}^{\oplus} \mathrm{p}_{\mathrm{a}=\text { false }} \\
& =(\text { true } \vee \mathrm{b}) \times O R(\text { false } \vee \mathrm{b}) \\
& \quad=\text { true XOR } \mathrm{b} \\
& =!\mathrm{b}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \mathrm{p}=\mathrm{a} \wedge \mathrm{~b} \\
\mathrm{p}_{\mathrm{a}} & =\mathrm{p}_{\mathrm{a}=\text { true }} \oplus \mathrm{p}_{\mathrm{a}=\text { false }} \\
& =(\text { true } \wedge \mathrm{b}) \oplus(\text { false } \wedge \mathrm{b}) \\
& =\mathrm{b} \oplus \text { false } \\
& =\mathrm{b}
\end{aligned}
$$

Definitional Method Examples

$$
\begin{aligned}
& \quad \frac{p=a \vee b}{\mathrm{p}_{\mathrm{a}}}=\mathrm{p}_{\mathrm{a}=\text { true }} \oplus \mathrm{p}_{\mathrm{a}=\text { false }} \\
& =(\text { true } \vee \mathrm{b}) \text { XOR }(\text { false } \vee \mathrm{b}) \\
& =\text { true XOR } \mathrm{b} \\
& =!\mathrm{b}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \mathrm{p}=\mathrm{a} \wedge \mathrm{~b} \\
\mathrm{p}_{\mathrm{a}} & =\mathrm{p}_{\mathrm{a}=\text { true }} \oplus \mathrm{p}_{\mathrm{a}=\text { false }} \\
& =(\text { true } \wedge \mathrm{b}) \oplus(\text { false } \wedge \mathrm{b}) \\
& =\mathrm{b} \oplus \text { false } \\
& =\mathrm{b}
\end{aligned}
$$

```
Use the definitional
    approach to solve
    for Pa
```


$$
\begin{aligned}
& \text { Use the definitional } \\
& \text { approach to solve } \\
& \text { for Pa }
\end{aligned}
$$

Definitional Method Examples

$$
\begin{aligned}
& p=a \vee b \\
p_{a} & =p_{a=\text { true }} \oplus p_{a=\text { false }} \\
= & (\text { true } \vee b) \text { XOR (false } \vee b) \\
& =\text { true XOR } b \\
& =!b
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{p=a \wedge b}{p_{\mathrm{a}}}=\begin{array}{l}
\mathrm{p}_{\mathrm{a}=\text { true }} \oplus \mathrm{p}_{\mathrm{a}=\text { false }} \\
=(\text { true } \wedge \mathrm{b}) \oplus(\text { false } \wedge \mathrm{b}) \\
= \\
=\mathrm{b} \oplus \text { false } \\
\\
=\mathrm{b}
\end{array}
\end{aligned}
$$

$$
p=a \vee(b \wedge c)
$$

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{p}_{\mathrm{a}=\text { true }} \oplus \mathrm{p}_{\mathrm{a}=\text { false }}
$$

$$
=(\text { true } \vee(\mathrm{b} \wedge \mathrm{c})) \oplus(\text { false } \vee(\mathrm{b} \wedge \mathrm{c}))
$$

$$
=\operatorname{true} \oplus(\mathrm{b} \wedge \mathrm{c})
$$

"NOT b v NOT c" means either b or c must be false

$$
\begin{aligned}
& \text { Use the definitional } \\
& \text { approach to solve } \\
& \text { for Pa }
\end{aligned}
$$

$$
=!(b \wedge c)
$$

$$
=!b \vee!c
$$

XOR Identity Rules

Exclusive-OR $(x \circ r, \oplus)$ means both cannot be true
That is, A xor B means
" A or B is true, but not both"

$$
\begin{aligned}
p & =A \oplus A \wedge b \\
& =A \wedge \neg b
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{p} & =\mathrm{A} \oplus \mathrm{~A} \vee \mathrm{~b} \\
& =\neg \mathrm{A} \wedge \mathrm{~b}
\end{aligned}
$$

with fewer symbols ...

$$
\begin{aligned}
p & =A \text { xor }(A \text { and } b) \\
& =A \text { and }!b
\end{aligned}
$$

$$
\begin{aligned}
p & =A \operatorname{xor}(A \text { or } b) \\
& =!A \text { and } b
\end{aligned}
$$

Repeated Variables

The definitions in this chapter yield the same tests no matter how the predicate is expressed
$(a \vee b) \wedge(c \vee b)==(a \wedge c) \vee b$
$(a \wedge b) \vee(b \wedge c) \vee(a \wedge c)$

- Only has 8 possible tests, not 64

Use the simplest form of the predicate, and ignore contradictory truth table assignments

A More Subtle Example

$$
\begin{aligned}
& \quad p=(a \wedge b) \vee(a \wedge!b) \\
& p_{a}=p_{a=\text { true }} \oplus p_{a=\text { false }} \\
&=((\text { true } \wedge b) \vee(\text { true } \wedge!b)) \oplus((\text { false } \wedge b) \vee(\text { false } \wedge!b)) \\
&=(b \vee!b) \oplus \text { false } \\
&=\text { true } \oplus \text { false } \\
&=\text { true }
\end{aligned}
$$

$$
\begin{aligned}
& \quad p=(a \wedge b) \vee(a \wedge \neg b) \\
& \mathbf{p}_{b}=p_{b=\text { true }} \oplus \mathbf{p}_{b=\text { false }} \\
&=((a \wedge \text { true }) \vee(a \wedge!\text { true })) \oplus((a \wedge \text { false }) \vee(a \wedge!\text { false })) \\
&=(a \vee \text { false }) \oplus(\text { false } \vee a) \\
&=a \oplus a \\
&=\text { false }
\end{aligned}
$$

- a always determines the value of this predicate
- b never determines the value $-b$ is irrelevant !

Logic Coverage Summary

Predicates are often very simple-in practice, most have less than 3 clauses

- In fact, most predicates only have one clause !
- With only clause, PC is enough
- With 2 or 3 clauses, CoC is practical
- Advantages of ACC and ICC criteria significant for large predicates
- CoC is impractical for predicates with many clauses

Control software often has many complicated predicates, with lots of clauses

In-Class Exercise Definitional method

$P=(a \mid b) \&(a \mid c) \& d$

Use the definitional method to solve for Pa First step: (($\mathrm{T} \mid \mathrm{b}) \&(\mathrm{~T} \mid \mathrm{c}) \& \mathrm{~d}) \operatorname{xor}((\mathrm{F} \mid \mathrm{b}) \&(\mathrm{~F} \mid \mathrm{c}) \& \mathrm{~d})$

In-Class Exercise Definitional method

$P=(a \mid b) \&(a \mid c) \& d$

Use the definitional method to solve for Pa First step: ((T|b) \& (T|c) \& d) xor ((F|b) \& (F|c) \& d)

$$
\begin{aligned}
P a & =((T \mid b) \&(T \mid c) \& d) \operatorname{xor}((F \mid b) \&(F \mid c) \& d) \\
& =(T \& T \& d) \operatorname{xor}(b \& c \& d) \\
& =d \operatorname{xor}(b \& c \& d)
\end{aligned}
$$

Using the identity: A xor (A \& b) == A and !b

$$
\begin{aligned}
& =d \&!(b \& c) \\
& =d \&(!b \mid!c)
\end{aligned}
$$

