Intro to Software Testing Chapter 8.1.2

Logic Coverage

Brittany Johnson SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Combinatorial Coverage

This is simple, neat, clean, and comprehensive ...

But can be **expensive**

– Impractical for predicates with more than 3 or 4 clauses

The literature has lots of suggestions – some confusing The general idea is simple:

Test each clause independently from the other clauses

Getting the details right is hard What exactly does "independently" mean ? The book presents this idea as "*making clauses active*" ...

Active Clauses (8.1.2)

Clause coverage has a **weakness** : The values do not always make a difference

Consider the CC tests for P = (a & (b | c)):

- Test 1: (true & (true | true))
- Test 2: (false & (false | false))

Clauses b and c are ignored!

To really test the results of a clause, the clause should be the **determining factor** in the value of the predicate

Active Clauses

Determination

Clause **c_i determines** the value of its predicate when the other clauses have certain values

If **c**_{*i*} is changed, the value of the predicate changes

c_i is called the *major clause*

Other clauses are *minor clauses*

This is called *making the clause active*

Determining Predicates

 $\mathbf{P} = \mathbf{A} \vee \mathbf{B}$

if **B** = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

$\mathbf{P} = \mathbf{A} \wedge \mathbf{B}$

if **B** = false, p is always false.

so if B = true, A determines p.

if **A** = true, B determines p.

- Goal : Find tests for each clause when the clause determines the value of the predicate
- This is formalized in a family of criteria that have subtle, but very important, differences

Making clauses active

P = (a & (b | c))

Write truth values for **b and c** that make clause **a** active For example: Pa : b=?? or c=?? Write truth values for **a and c** that make clause **b** active Write truth values for **a and b** that make clause **c** active

Making clauses active

P = (a & (b | c))

Pa: (b=true or c=true compactly: (b or c) Pb: (a and !c) Pc: (a and !b)

Write truth values for **b and c** that make clause **a** active For example: Pa : b=?? or c=?? Write truth values for **a and c** that make clause **b** active Write truth values for **a and b** that make clause **c** active

Active Clause Coverage

<u>Active Clause Coverage (ACC)</u> : For each clause C_i in each predicate p, choose values for the other clauses to make c_i active

Create two tests, one where C_i evaluates to true and the other where C_i evaluates to false

• This is a form of MCDC, which is required by the FAA for safety critical software

ACC Ambiguity

Do the minor clauses have to have the same values for both tests?

- Restricted ACC: They do
- Correlated ACC: They do not, but the predicate has to have different values
- General ACC: They do not, and the predicate does not have to have different values either
- The FAA requires **MCDC** (modified condition decision coverage) for flight critical software
 - Original definition of MCDC was GACC
 - For years, some inspectors required RACC, some CACC
 - MCDC is now equivalent to CACC
 - We are skipping GACC and RACC

CACC Example

	а	b	С	a & (b c)
1	Т	Т	Т	Т
2	Т	Т	F	т
3	Т	F	Т	т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

For **a** to determine the value of the predicate

P_a : b=true or c = true

So we can use <u>ANY</u> OF the 9 pair of rows: (1,5), (1,6), (1,7), (2,5),(2,6),(2,7), (3,5),(3,6),(3,7)

For **b** to determine the value of the predicate

P_b : a=true and c = false

Rows 2 and 4

For **c** to determine the value of the predicate

P_c : a=true and b = false

Rows 3 and 4

Making clauses active

```
P = ((a&b) | c | (d&e))
```

Pick any one of the 5 clauses Call it **ci** Solve for **ci** Answer by giving truth values for the other 4 clauses that make your **ci** determine the value of the predicate

Making clauses active

P = ((a&b) | c | (d&e))

Pick any one of the 5 clauses Call it **ci** Solve for **ci** Answer by giving truth values for the ot make your **ci** determine the value of the Pa = b and !c and !(d and e) = b and !c and (!d or !e) Pb = a and !c and !(d and e) = a and !c and (!d or !e) Pc = !(a and b) and !(d and e) = (!a or !b) and (!d or !b) Pd = !(a and b) and !c and e = (!a or !b) and !c and e Pe = !(a and b) and !c and d = (!a or !b) and !c and d