Intro to Software Testing
Chapter 7.3

Graph Coverage for Source Code

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Overview

A common application of graph criteria is to program
source

Graph: Usually the control flow graph (CFG)
Node coverage: Execute every statement
Edge coverage: Execute every branch

Loops: Looping structures such as for loops, while loops,
etc.

Data flow coverage: Augment the CFG

- defs are statements that assign values to variables
- uses are statements that use variables

Control Flow Graphs

A CFG models all executions of a method by describing
control structures

Nodes: statements or sequences of statements (basic
blocks)

Edges: Transfers of control

Basic block: A sequence of statements such that if the first
statement is executed, all statements will be (no branches)

CFGs are sometimes annotated with extra information

- branch predicates
- defs
- Uses

Rules for translating statements into graphs...

Draw the
graph. Label
the edges
with the Java
statements.

1f (x < vy)
{
y = 0;
X = X +
1;
}
else
{
X =Y,
}
1f (x < vy)
{
y = 0;
X = X +

Draw the
graph and
label the

edges.

CFG: The 1f Statement

X <Yy X >=Yy
y =0
— X =Yy
X1X+

|

1
X <Yy
y =0 X >=y
x=1x+
EV

CFG: The 1f-return Statement

1f (x < vy)
{

¥
print (x);
return;

return;

Draw the
graph and
label the

edges.

No edge from node 2 to 3.
The return nodes must be distinct.

return

X <Y

X >= Yy

\ 4
oL
return

Loops

Loops require "extra” nodes to be added

Nodes that do not represent statements or basic blocks

CFG: while and for loops

dummy node

X = 0;

while (X < vy)

1 Draw the graph
y = f (x, and label the

¥); edges.
X =X+ 1;

}

return (x);

for (X = 0; X <y; X++

{
¥

return (x);

y =f (X, y);

Draw the graph

and label the .
edges. IO NO

implicitly
Increments loop

implicitly
Iinitializes loop

CFG: do loop, break, and contlnue

Draw the
x = 0; @X =9 | graph and
do X = 0; label the
{ while (x < y) edges.
= 'F (X y), {
X + 1; y = f (X, YD,
} Whlle (x < y), }f (y == 0)
return ;
&3 break;
} else if (y < 0)
l {
y = y*¢;
=0 c continue;
Draw the 1
graph and X = x + 1;
label the a® !
edges. return (y);

V
return (y)

CFG: The case (switch) Structure

read (¢) ;
switch (¢)
{
case ‘N’:
z = 25;
case ‘Y’:
X = 50;
break;
default:
X = 0;
break;
}
print (x);

Draw the
graph and
label the

edges.

Cases without breaks fall
through to the next case

rint (x);

CFG: Exceptions (try/catch)

try
{
s = br.readlLine();
1f (s.length() > 96)
throw new Exception
(“too long”);
1f (s.length() == 0)
throw new Exception
(“too short”);
+ (catch I0Exception e) {
e.printStackTrace();
} (catch Exception e) {
e.getMessage();
ks

return (s);

s = br.readLine()

IOException

length <= 96

e.printStackYrace() lengt -
>

Draw the

graph and
label the

edges.

Example Control Flow - Stats

public static void computeStats (int [] numbers)

{
int length = numbers.length;

double med, var, sd, mean, sum, varsum;

Fom Tint i = 0: 1 < length: i

{or' (int 1 =0; 1 < er.lgt 5 1++) Draw the
sum += numbers [1]; graph and

} label the

med = numbers [length / 2]; d

mean = sum / (double) length; eages.

varsum = 0, . -
Eor (int 1 = 0; 1 < length; 1++)

varsum = varsum + ((numbers [1] - mean) * (numbers

[1] - mean)),
}

var = varsum / (length - 1.0);

sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: "+ meang;
System.out.println g"median: " + med);
System.out.println ("variance: "+ var);
System.out.println ("standard deviation: " + sd);

public static void computeStats (int [] numbers)

{

int-tength = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;

/. : Se—
for (1nt 1 = 0y 1 < Tengtiny—t-2
1

}

imed = numbers | Length / ¢
mean = sum / (double) length

sum += numbers [1];

varsum = 0;

for (int 1 = Q0j)-t+—<-length: 1++) \

i | et

varsum = varsum + ((numbers [1] - mean) * (numbers [1] =

}
var=-varsum / (length - 1.0);

sd = Math.sqgrt (var);

System.out.println "length "+ 1°n*+h);
System.out.println g mean: " + mecn
System.out.println ("median: " + medy;
System.out.println ("varlance° "+ var);
System.out.println ("standard deviation: " + sd);

1 >=| length

12

Coptrol Flow TRs and Test Paths - EC

e Edge Coverage
TR Test Path
(2 | A.[1,21| [1,2,3,4,3,56,7,6,8]
Write down - -
the TRs for B. - 2/ 3 -
e =C C. - 3,4 : Write down
' D.13,5 - test paths
° E.[4, 3] that tour all
° F [5, 6 edges.
G.[6,7!
° H.[6,8]
.[7,6]

Control Flow TRs and Test Paths - EPC

Edge-Pair Coverage

Write down
the TRs for
EPC.

TR
AT1,2,3]

B.[23,4]
C.[2,3,5]
D.[3,4,3]
E.[3,56]
F[4,3,5]

G.[56,7]
H.[5,6,8]
1.[6,7,6]

.[7,6,8]

K.[4,3,4]
L.[7,67]

Test Path
I[I’Z’ 3’4’ 3’ 59 6’ 7’ 6’8] Write down
i.[1,2,3,56,8] test paths
i.[1,2,3,4,3,4,3,5,6,7, | that tour al
edge pairs.
6,7,6,8]

TP TRs toured sidetrips

BB 63— C, H

i A/C, E, H

i | AB,D,E,FG,I C, H

J K L

TP iii makes TP i
redundant. A minimal
set of TPs is cheaper.

Control Flow TRs and Test Paths - PPC

Prime Path Coverage
Write down
the TRs for TR Test Path
PPC. A.[3,4, 3" i.01,23,4,3,56,7,6,8]
B.[4, 3,4 11.[1,2,3,4,3,4,3, Write down
C.[7,6,7 ! 5,6,7,6,7,6,8] test paths
D.[7,6, 8] 1.[1,2,3,4,3,5,6,8] |thattourall
E.[6,7,0] Iv.[1,2,3,5,6,7,6,8] |prime paths.
F.[1,2 3,4] v. [1,2,3,5,6, 8]
G.[4,3,5,6,7] —
H.[4 3’ 5, 6, 8] TP TRs toured sidetrips
.[1,2,3,5,6,7] 7.(/ﬂe\DE—F-$, H, 1, J
J.[1,2,3,5,6,8] i | A,B,C,D,EFG, H, 1, J
// i A F H J
- / \ D, E F,I J
TP 11 makes
TP i redundant. v J

Data Flow Coverage for Source

def: a location where a value Is stored into memory
- X appears on the left side of an assignment (x=44;)
- X Is an actual parameter in a call and the method changes its value

- X is a formal parameter of a method (implicit def when method starts)
- X Isaninput to a program

use: a location where variable’s value is accessed
- X appears on the right side of an assignment
- X appears in a conditional test
- X Is an actual parameter to a method
- X Is an output of the program
- X Is an output of a method in a return statement

If a def and a use appear on the same node, then it is only a DU-
pair if the def occurs after the use and the node is in a loop

Example Data Flow - Stats

public static void computeStats (int [] numbers)

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0.0;
Eor (int 1 = 0; 1 < length; i++)

sum += numbers [1];

med = numbers [length / 2]
mean = sum / (double) length;

varsum = 0.0; . :
for (int 1 = 0; 1 < length; 1++)

{

y varsum = varsum + ((numbers [1] - mean) * (humbers [1] - mean));
var = varsum / (length - 1);

sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: "o+ meang;
System.out.println ("median: "+ med);

System.out.println ("variance: o "+ var);

System.out.println ("standard deviation: " + sd);

17

Control Flow Graph for Stats

(numbers)
sum=0
length = numbers.length

Annotate with the
statements ...

= length

med = numbers [length /2]
mean = sum / (double) length
varsum=0

i=0

sum += numbers [i
i++

= length

I < length
var =varsum /(length-1.0)
sd = Math.sqgrt (var)

varsum = ... :
print (length, mean, med, var, sd)

i++

CFG for Stats — with defs and uses

def (1) = { numbers, sum, length }
(1) = { numbers}

Turn the annotations
into def and use sets

def (5) = { med, mean, varsum, i }
use (5) = { numbers, length, sum }

use (6, 8) ={i, length }

def (8) ={var, sd}
use (8) = { varsum, length, mean,
med, var, sd }

def (7) = { varsum, i }
use (7) = { varsum, numbers

19

Def and Uses tables for Stats

Node Def Use Edge Use
1 { numbers, { numbers} (1, 2)
sum, length } (2. 3)
2 L) 3, 4) i length}
> (4, 3)
4 {sum, i} { numbers, i, sum } : :
5 { med, mean, |{numbers, length, 3, 5) LI, length }
varsum, i} sum } (5, 6)
6 (6, 7) {1, length}
7 { varsum, i } { varsum, numbers, i, (7, 6)
mean } (6, 8) {i length}
8 { var, sd } { varsum, length, var,
mean, med, var, sd }

Summary

Applying the graph test criteria to control flow graph is
relatively straightforward

- Most Of the developmental research work was done with CFGs

A few subtle decisions must be made to translate control
structures into the graph

Some tools will assign each statement to a unique node
- These slides and the book use basic blocks
- Coverage Is the same, although the bookkeeping will differ

