
Introduction
Software Testing and Maintenance

SWE 437

Brittany Johnson

Adapted from slides by Jeff Offutt

“Traditional” Quality Attributes
(1980s)

1. Efficiency of process (time-to-market)
2. Efficiency of execution (performance)

We often teach these as priorities in undergrad
computer science classes…

This was true…in 1985

Modern Quality Attributes
1. Reliability
2. Usability
3. Security
4. Availability
5. Scalability
6. Maintainability
7. Performance & time to market

All of these factors (sometimes called “-ilities”) are
important in the 2000s

Based on an informal survey of around a dozen software development managers, 2000

Software Projects in the 1960s
In the 1960s we built log cabins…

Single programmer

Not much complexity

No process needed

Design could be kept in short

term memory

Software Projects in the 1970s
In the 1970s we built bigger houses…

Still single programmer

- focus on algorithms & programming

A little more complex

Lack of process = disasters

Quality didn’t affect bottom line

But costs were starting to increase…

Software Projects in the 1980s
In the 1980s we built office buildings…

We needed teamwork and communication

A lot more complex + data abstraction

Needed written requirements and design

Poor process à spectacular failures

Missing skills and knowledge for successful engineering

Software Projects in the 1990s
In the 1990s we built skyscrapers…

Teamwork + communication not enough

Needed new technologies – languages, modeling

techniques, and processes

Software development changed completely

New languages (Java, UML, etc) led to

revolutionary procedures…

But (sadly) education fell behind…

Software Projects in the 2000s
In the 2000s we build integrated collections of
continuously evolving cities…

Primary focus shift from algorithm design and

programming

CS education fell behind so much it became

obsolete

Developers get more from training courses than

college

Not much new development

Pace of Change is Exhilarating
We have gone from…

- log cabins…to houses…to office buildings…to skyscrapers… to
building the most complicated engineering systems in human history!

Civil engineers took thousands of years for this kind of change
- And the most complicated civil engineering products pale in

comparison to the complexity of a modern IT system

Electrical engineers took a couple of centuries

No way researchers, educators, or engineers could
keep up!

Theory, Practice, & Education
What have you learned in college?

How to build houses
General software engineering courses (SWE/CS 321) introduce a
few concepts about buildings

The way we build software has changed dramatically since the
CS curriculum stabilized in 1980!!

What about…
Maintenance…evolution…re-engineering…maintainability…being
“agile”

What Can You Do?
As a developer or software engineer…

- Program neatly

- Design for change

- Follow processes that make change easy

As a professional…
- Listen when colleagues teach you new things

- Take training classes eagerly

- Further your education (MS degree)

Goals of this class
1. Reliability & Testing
2. Usability
3. Security
4. Availability
5. Scalability
6. Maintainability
7. Performance & time to market

First third of SWE 437

Last two thirds of SWE 437

Why focus on these topics??
Most software development is actually maintenance

- or more accurately, “evolution”
Evolution is not as boring as it was in the 1980s

- and the support is so much better!
“We have as many testers as we have developers. And
developers spend half their time testing. We’re more of a testing
organization than we’re a software organization.”

- Bill Gates of Microsoft

This class teaches modern methods for the two dominant
portions of software development:

testing and maintenance

