Intro to Software Testing Chapter 7.1

Graph Coverage Criteria Overview

Brittany Johnson SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Covering Graphs (7.1)

Graphs are the most **commonly** used structure for testing

Graphs can come from many sources

- Control flow graphs
- Design structure
- FSMs and state charts
- Use cases

Tests usually are intended to "**cover**" the graph in some way

Definition of a graph

A set *N* of **nodes**, *N* is not empty

A set N₀ of **initial nodes**, N₀ is not empty

A set N_f of **final nodes**, N_f is not empty

A set *E* of **edges**, each edge from one node to another - (*n_i*, *n_j*), *i* is **predecessor**, *j* is **successor**

Is this a graph?
$$N_0 = \{1\}$$
$$N_f = \{1\}$$
$$E = \{\}$$

Paths in graphs

Path: A sequence of nodes $-[n_1, n_2, ..., n_M]$

- Each pair of nodes is an edge

Length: The number of edges

- A single node is a path of length 0

Subpath: A subsequence of nodes in *p* is a subpath of *p*

A Few Paths	
[1, 4, 8]	
[2, 5, 9, 6, 2]	
[3, 7, 10]	

In-class group exercise Graph definitions

6 5

Answer the following questions for the graph on the left

- 1. How many nodes are in the graph?
- 2. How many edges are in the graph?
- 3. What is the set of initial nodes?
- 4. What is the set of final nodes?
- 5. Write two paths in the graph.
- 6. Write a subpath of one of your paths.
- 7. How many paths are in the graph?

Test paths and SESEs

Test path: A path that starts at an initial node and ends at a final node

Test paths represent execution of test cases

- Some test paths can be executed by many tests
- Some test paths cannot be executed by any tests

SESE graphs: All test paths start at a single node and end at another node

- single-entry, single-exit
- $N_{\rm 0}$ and $N_{\rm f}$ have exactly one node

Visiting and touring

Visit: A test path *p* **visits** node *n* if *n* is in *p* A test path *p* **visits** edge *e* if *e* is in *p*

Tour: A test path *p* **tours** subpath *q* if *q* is a subpath of *p*

Test path [1, 2, 4, 5, 7] Visits nodes ? 1, 2, 4, 5, 7 Visits edges ? (1,2), (2,4), (4, 5), (5, 7) Tours subpaths ? [1,2,4], [2,4,5], [4,5,7], [1,2,4,5], [2,4,5,7], [1,2,4,5,7] (Technically, each edge is also a subpath)

Tests and test paths

path (t): the test path executed by test t
path (T): the set of test paths executed by the set of tests T

Each test executes one and only one test path

- Complete execution from a start node to a final node

A location in a graph (node or edge) can be **reached** from another location if there is a sequence of edges from the first location to the second

- Syntactic reach: a subpath exists in the graph
- Semantic reach: a test exists that can execute that subpath
- This distinction becomes important in **section 7.3**

Tests and test paths

Deterministic software-test always executes the same test path

Non-deterministic software-the same test can execute different test paths

In-class group exercise Test paths

6 5

Answer the following questions for the graph on the left

- 1. Identify the cycle in the graph.
- 2. Write all test paths that go through the cycle no more than once.
- 3. Write one path in the graph that is not a test path.
- 4. Write one test path in the graph.
- 5. How many test paths are in the graph?