
2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VLlHCC)

Adapting Program Analysis Tool Notifications to

the Individual Developer

Brittany Johnson

Department of Computer Science

NC State University

Raleigh, North Carolina

Email: bijohnso@ncsu.edu

Abstract-There are a variety of tools available for developers
to use in their IDEs. Research suggests, however, developers
may not use these tools due to difficulty interpreting the output.
My research explores the possibility of creating frameworks that
enable more individualized program analysis tool notifications for
increased usability. I propose creating models that represent what
developers know about programming concepts using exisitng
developer data. These models could then be used to inform tools
on notifications the developer may or may not understand.

I. INTRODUCTION

A variety of program analysis tools are made available

to developers to automatically develop and analyze code.

Automating the software development process is less tedious

and helps increase code quality [2], [9]. FindBugs, for ex

ample, is a static analysis tool designed to be used by any

Java developer to find potential defects in their source code.

However, research suggests that developers are not always

able to parse and understand the output provided by tools like

FindBugs [8].

Many tools, like FindBugs, attempt to provide detailed

information, in the form of notifications, to help developers

when diagnosing potential defects in their code. However,

there is typically no consistency as to what notifications

provide more or less detail. For example, for most program

analysis tool notifications, level of detail, availability of re

sources, and usage of examples varies by notification. Rather

than variation based on information needed by the developer,

it is inconsistent with no obvious pattern. If a notification

does not provide enough information, the developer may have

to interrupt what she is doing to find outside resources to

determine the problem [1]. If the notification provides too

much detail, she may find it too time consuming to find the

important information, thereby ignoring the entire notification

or discontinuing use of the tool.

Some tools, like CheckStylel and Firefox Developer Tools, 2

allow developers to manually modify or add information to

notifications, which could help deal with notification inconsis

tencies. However, this can be a manual, time consuming task

and many developers may either not be aware of the option or

do not want to take the time to create the custom messages [6].

I http://checkstyle.sourceforge.net/config.html
2https://developer.mozilla.org

978-1-4673-7457-6/15/$3\.00 ©2015 IEEE

It would benefit developers if tools could automatically deter

mine how much they know about a notification and if tools

used that information to adapt their notifications. One way to

adapt a notification is to add or remove information, visual or

textual, pertaining to the problem.

I propose research that explores the feasibility of tools that

automatically tailor themselves to the developer using them.

In this paper, I discuss my proposed approach to designing

tools to adapt notifications, the novelty of this idea, and the

work I have done and plan to do for this research.

II. A NEW WAY TO ApPROACH TOOL DESIGN

Existing program analysis tools provide notifications to de

velopers without considering what information each individual

may need. I propose that tools could be more effective, and

therefore more widely used, if they tailored their notifications

to the developer using them. This can be done by creating

models that represent an individual developer's understanding

of programming concepts, such as multi-threading and null

object dereferencing. Fritz and colleagues created similar

models to determine how familiar a developer is with a

code base [5]. Other works have also created and used similar

models, such as JADEITE, a tool for reconunending API usage

examples [10]. Rather than modeling knowledge of code,

however, I would model knowledge of programming concepts.

Existing approaches to designing adaptive tools, such as

work done by Zou and colleagues towards adaptive menus in

Eclipse, build their models using either real-time data, such

as question responses, or data from others, such as code other

developers, typically experts, have written [11]. I propose the

use of models built based on existing individual developer data

and refined based on existing and real-time data collected in a

non-intrusive manner. This data could come from a variety of

sources. The primary source of existing data would be the code

that the developer has written. Presumably, the more code she

has written relevant to a particular concept, the more likely

it is she understands that concept. Other sources of exisiting

data would include bug tracker activity and online community

participation.

Using models built based on the individual developer, tools

can determine how much that developer may know about

the concepts relevant to a given notification. For example,

a developer that has written multiple code snippets using

synchronized blocks may be able to understand a notification

about synchronization without any additional information.

However, a developer who has never written any code relevant

to synchronization may struggle and require additional infor

mation or a different description all together. In the following

sections, I discuss the work I have done so far towards

notification adaptations.

III. PREDICTING DEVELOPER CONCEPTUAL KNOWLEDGE

I have begun to explore the potential for adapting tool

notifications to the developer by collecting developer data

to answer the initial question "Can we predict conceptual

knowledge?" [7]. I chose to begin with the concept of null

object dereferencing as this is a fundamental progranuning

concept that many program analysis tools include in their

analyses and notifications.

So far, I have collected data from students at NC State

University and developers on GitHub, with a total of 17

participants. 3 I asked all participants who gave consent to

fill out a concept inventory on null and analyzed their

code on GitHub. Using the data collected, I created and

evaluated models based on code written relevant to null

object dereferencing; this includes the addition and removal

of null checks. As a baseline, I created a model based on

lines of code written in general; research suggests the code a

developer has written is often an indicator of that developer's

experience [5], [3].

Our findings suggest that relevant code written may be a

better indicator of conceptual knowledge than all code written

by a developer. Both models I built currently predict developer

knowledge within 1 point of concept inventory score (out of 9)

47% of the time. However, the lines of code added model has a

negative correlation with the score and null checks contributed

has a positive correlation. Details on these results can be found

in a previous paper [7].

IV. WORKING TOWARDS PERSONALIZED NOTIFI CATIONS

Despite this glimpse into the possibility of modeling devel

oper conceptual knowledge, there exists challenges that need

to be overcome and that shed a light on the need for frame

works to support the developement and use of such models.

One challenge is gathering all the developer data needed to

build the models, especially being some of the data may not be

able to be collected in real-time. Analyzing developer source

code provides insights into the developer's experience with

the concepts, however, may not be entirely representative of

all the developer knows. This could lead to intially inaccurate

models. Other challenges include helping developers deal with

transitions between notification presentations and scaling the

idea up to the large number of programming concepts that can

be modeled. As I continue this work, I will investigate how I

can also collect data from the developer, such as self-reported

experience, to increase the accuracy and usage of the models.

Overcoming the challenges to creating models for notifica

tion adaptation is a long term process that will continue to

3http://github.com

evolve. To further investigate the feasibility of this research,

I plan to continue to extend and validate the models I have

been building with more developers and build others for other

concepts, such as string manipulation and multi-threading. To

validate these models, I plan to recruit more developers and

predict their knowledge values based on an analysis of their

code. I will then ask them to take the concept inventory

to determine the actual score and compare the two. Once

my predicted scores are more often accurate than inaccurate,

perhaps within 1 point of the actual score, I can move on to

creating a conceptual knowledge scale. I plan to create a scale

for mapping different adaptations to developer knowledge

scores, similar to the scale developed by Egelman and Peer

for predicting security behavior [4]. I also plan to explore

what notification adaptations will look like so tools can more

easily determine when to make an adaptation and what kind of

changes to make to notification presentation to better support

the developer.

ACKNOWLEDG MENT

This material is based upon work supported by the National

Science Foundation under grant numbers 1217700 and DGE-

0946818.

REFERENCES

[I] M. B. Edwards and S. D. Gronlund. Task interruption and its effects on
memory. Memory, 6(6):665-687, 1998.

[2] L. C. Briand, W. M. Thomas, and C. J. Hetmanski. Modeling and
managing risk early in software development. In Proceedings of the
International Conference on Software Engineering, pages 55-65, 1993.

[3] J. J. Canas, M. T. Bajo, and P. Gonzalvo. Mental models and com
puter programming. International Journal of Human-Computer Studies,
40(5):795-811, 1994.

[4] S. Egelman and E. Peer. Scaling the security wall: Developing a security
behavior intentions scale (sebis). In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, pages 2873-
2882. ACM, 2015.

[5] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A degree-of
knowledge model to capture source code familiarity. In Proceedings of
the 32nd ACMIIEEE International Conference on Software Engineering
Volume I, pages 385-394. ACM, 2010.

[6] T. Grossman, G. Fitzmaurice, and R. Attar. A survey of software
learnability: metrics, methodologies and guidelines. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
649-658. ACM, 2009.

[7] B. Johnson, R. Pandita, E. Murphy-Hill, and S. Heckman. Bespoke
tools: Adapted to the concepts developers know. In Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing.
IEEE, 2015.

[8] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don't
software developers use static analysis tools to find bugs? In Proceedings
of International Conference on Software Engineering, pages 672-681,
2013.

[9] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, and M. Vouk. Pre
liminary results on using static analysis tools for software inspection. In
Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, pages 429-439. IEEE, 2004.

[10] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers. Improving api
documentation using api usage information. In Visual Languages and
Human-Centric Computing, 2009. VUHCC 2009. IEEE Symposium on,
pages 119-126. IEEE, 2009.

[II] Y. Zou, M. Lerner, A. Leung, S. Morisson, and M. Wringe. Adapting the
user interface of integrated development environments (ides) for novice
users. Journal of Object Technology, 7(7):55-74, 2008.

