
ABSTRACT

JOHNSON, BRITTANY ITELIA. A Tool (Mis)communication Theory and Adaptive Approach for
Supporting Developer Tool Use. (Under the direction of Emerson Murphy-Hill and Sarah Heckman.)

Software development and maintenance is an important part of the software engineering process.

It is during these phases of the software engineering process that developers complete actions

to ensure quality software, such as finding and resolving software defects and refactoring. Many

of the actions involved in writing and maintaining software are manual, tedious and, as a result,

error-prone. Program analysis tools, including those that find and resolve defects, provide feedback

to and automate tasks for developers. Research has found, however, that developers use these

tools infrequently in practice. Multiple studies have explored developers’ usage of program analysis

tools and cumulatively found that developers encounter various challenges when attempting to

understand and resolve problems in their code.

The goal of this research is to improve the communication between developers and static analysis

tools by providing theories and approaches that identify and utilize the differences between devel-

opers’ information needs, based on their knowledge, that influence developers’ ability to resolve tool

notifications. To achieve this goal, I explored developer tool usage and information needs when

understanding and resolving notifications. In this thesis, I propose a theory that developers have

difficulty with tool output because of gaps and mismatches between how much developers know

and how tools communicate. I evaluate this theory by building on other existing research to deter-

mine factors that influence developer knowledge and information needs of developers, based on

their knowledge, when resolving defects.

My dissertation consists of four consecutive studies that evaluate my thesis, that program

analysis tool use is a form of communication and inability to interpret and resolve notifications is

a result of miscommunication caused by knowledge gaps and knowledge mismatches; therefore

we can improve tool design by providing the means for tools to classify individual developer’s

conceptual knowledge and adapt notifications accordingly, leading to the potential for reducing

time required for developers to resolve tool notifications, increasing ability to resolve, and decreasing

attempts made when resolving.

I first conducted a study to explore the reasons developers have for using and not using static

analysis tools. I categorized interview responses from professional developers about their usage

of tools and identified five reasons developers have for not frequently using the tools available to

them. The results suggest that one major barrier to use is the ability for developers to understand

the textual and visual notifications provided by tools. The second study took a deeper look at the

difficulties developers have when understanding tool notifications by observing developers as

they attempt to explain textual and visual notifications presented by various tools. Based on the

data collected and analyzed, I proposed a theory of tool communication based on the 10 kinds

of challenges identified in the data. All of the challenges identified in this study stemmed from

gaps in developers’ knowledge that notifications did not fill and mismatches between knowledge

participants had accrued through their experiences and the information provided by tools.

After determining an explanation for developer difficulties with tool notifications, the next study

evaluated the possibility of operationalizing and evaluating that theory. The theory, and previous

research, suggests software development experiences influence developer knowledge. Therefore, the

third study used developer source code contributions, one of the primary experiences for developers,

and concept inventories, a validated educational assessment, to classify developers based on their

knowledge of programming concepts. The models created from this study classified developers’

knowledge of variables, exception handling, and generics with 60–80% accuracy. Results from this

study support the possibility for tools to automatically ascertain how much developers know about

the defects they encounter in their code using the source code they have written.

Finally, because it is possible to classify developer knowledge using their code contributions, the

fourth study evaluated the effectiveness of using developer knowledge classification to customize the

information presented to developers by program analysis tools. I used existing research on problem

solving to adapt notifications communicating about defects pertaining to the concepts of variables,

exception handling, and generics. I presented developers classified as novices and experts in the

concepts of interest with notifications aligned and misaligned with their knowledge classification

to compare performance and preference. I found that most often, it took participants less time to

resolve notifications aligned with their knowledge classification; there was a significant difference

between the time it took novices and experts in a given concept to resolve aligned versus misaligned

notifications. I also found that on average, novices in a given concept presented with aligned

notifications made significantly fewer attempts at resolving notifications than those presented with

misaligned notifications, and that developers tended to prefer information provided in aligned

notifications. For experts, aligned notifications led to a higher percentage of resolved notifications.

Although not all differences in observations were statistically significant, results from this study

suggests that presenting information in tool notifications based on developer software development

experiences can improve communication between developers and their tools. I conclude this thesis

with a discussion of future research directions that will stem from this research.

© Copyright 2017 by Brittany Itelia Johnson

All Rights Reserved

A Tool (Mis)communication Theory and Adaptive Approach for Supporting Developer Tool Use

by
Brittany Itelia Johnson

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2017

APPROVED BY:

Tim Menzies Tiffany Barnes

Emerson Murphy-Hill
Co-chair of Advisory Committee

Sarah Heckman
Co-chair of Advisory Committee

DEDICATION

To my parents, Engadine and Valerie, who made me the strong black woman I am.

To my sister, Chelsea, who continues to motivate and inspire me through everything.

To the love of my life, Anthony, who has been supportive and by side the whole ride.

To my first mentor, Dr. James Bowring, who helped me find my passion and urged me to pursue it.

ii

BIOGRAPHY

Brittany Itelia Johnson was born in a small town called Sumter, South Carolina to Engadine and

Valerie Johnson on November 25, 1988. She graduated from Sumter High School in 2007. During

her time in high school, Brittany was active in the marching and jazz bands. After high school,

she continued on to pursue her undergraduate degree at the College of Charleston (CofC), where

she studied Computer Science. While at CofC, Brittany was a member of SCAMP, an organization

focused on increasing minority participation in STEM research. This led to her participation in

undergraduate research, which informed her passion to pursue a Ph.D. She was also a member of

the Pep Band, where she let off some academic steam, and an officer in the CofC Chapter of the

National Society of Collegiate Scholars. Brittany obtained her Bachelor of Arts in Computer Science

in Spring 2011. She was selected as the feature student graduating from College of Charleston with

the Class of 2011 for her involvement and performance in academics, research, and extra-curricular

activities. Following her time at CofC, Brittany began her journey to her Ph.D. at NC State University

in Fall 2011 under the direction of Dr. Emerson Murphy-Hill. As she began her Ph.D. studies, she

accrued a co-advisor, Dr. Sarah Heckman. During her time at NC State, aside from her research,

she participated in numerous outreach and mentoring initiatives as she discovered her passion for

mentoring others like her. Brittany aspires to have a career in academia, where she can incorporate

both her passion for research and her passion for mentoring.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisors, my committee, the Developer Liberation Front, RealSearch, and

AltCode for their help.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1

Chapter 2 Related Work . 6
2.1 Program Analysis Tools . 6

2.1.1 Static Analysis Tools . 7
2.1.2 Dynamic Analysis Tools . 7
2.1.3 Communication via Notifications . 8
2.1.4 Typical Notification Components . 9
2.1.5 Breaking Down the Code Developers Write & Tools Analyze 11

2.2 Program Analysis Tool Usability . 14
2.3 Aiding Notification Resolution . 15
2.4 Predictive User Models . 17

Chapter 3 Static Analysis Tools Use . 19
3.1 Exploring Developer Tool Use . 21

3.1.1 Participants . 21
3.1.2 Research Questions . 21
3.1.3 Part I: Questions and Short Responses . 22
3.1.4 Part II: Interactive Interview . 22
3.1.5 Part III: Participatory Design . 23
3.1.6 Coding Interview Responses . 23

3.2 Barriers to Tool Use . 25
3.2.1 RQ1: Reasons for Use and Underuse . 26
3.2.2 RQ2: Workflow Integration . 29
3.2.3 RQ3: Tool Design . 31
3.2.4 Threats to Validity . 32

3.3 Next Steps to A Solution . 34
3.3.1 Notification Resolution Solutions . 34
3.3.2 Notification Understandability Solutions . 34

Chapter 4 Theory of (Mis)communication . 36
4.1 Identifying Challenges . 37

4.1.1 Participants . 37
4.1.2 Program Analysis Tools Investigated . 38
4.1.3 Study Protocol . 40
4.1.4 Data Collection . 42
4.1.5 Data Analysis . 42
4.1.6 Study Credibility & Findings Validation . 43

4.2 Knowledge-Related Challenges . 44

v

4.2.1 Knowledge Gaps . 45
4.2.2 Knowledge Mismatches . 49
4.2.3 Member Check . 53

4.3 From Theory to Practice . 53
4.3.1 Filling Developer Knowledge Gaps . 53
4.3.2 Matching Developer Expectations . 54

Chapter 5 Assessing Developer Knowledge . 56
5.1 Modified Concept Inventories . 58
5.2 Defining Conceptual Content . 59
5.3 Building A Bank of Questions . 60
5.4 Think Aloud Pilots . 60
5.5 Concept Inventory Validation . 61

5.5.1 Item Analysis . 61
5.5.2 Distractor Analysis . 62

5.6 Limitations & Challenges . 63

Chapter 6 Developer Knowledge Classification . 65
6.1 Knowledge Acquisition . 66
6.2 Knowledge Classification . 67

6.2.1 Knowledge Validation . 67
6.2.2 Knowledge Prediction . 67

6.3 Knowledge Models . 76
6.3.1 RQ1 Findings . 76
6.3.2 RQ2 Findings . 79

6.4 Implications . 79
6.4.1 Program Analysis Tool Output . 80
6.4.2 Industry & Education Practices . 80

6.5 Lessons Learned . 81
6.5.1 Limitations . 81
6.5.2 Challenges . 82

Chapter 7 Knowledge-Based Communication . 84
7.1 Proposed Approach . 85

7.1.1 Notification Adaptations . 85
7.1.2 Notification Selection . 89
7.1.3 Adaptation Evaluation . 90

7.2 Adaptation Effectiveness . 93
7.2.1 Resolving Adapted Notifications . 93
7.2.2 Adaptation Preferences . 98
7.2.3 Threats to Validity . 100

7.3 From “Pipe Dream” to Reality . 101
7.3.1 Challenges to Overcome . 102

Chapter 8 Contributions and Future Work . 104

vi

8.1 Future Directions . 105
8.1.1 The Big Picture . 105
8.1.2 Developer Knowledge Acquisition . 107
8.1.3 Developer Knowledge Classification . 107

BIBLIOGRAPHY .109

APPENDICES .120
Appendix A Chapter 3 Artifacts . 121

A.1 Pre-Interview Questionnaire . 121
A.2 Interview Script . 124
A.3 Participatory Design Sketches . 131
A.4 Coding Categories with Examples . 143

Appendix B Chapter 4 Artifacts . 145
B.1 Notification Oracle . 145
B.2 Pre-Questionnaire and Consent Form . 155
B.3 Session Script . 159

Appendix C Chapter 6 Artifacts . 166
C.1 Example Concept Inventory (Generics) . 166
C.2 Example Feature Hierarchy (Generics) . 173
C.3 Example Concept Map and Bloom’s Taxonomy Assessment Mapping (Generics)176

vii

LIST OF TABLES

Table 3.1 Descriptive statistics reported by participants. 20

Table 4.1 Notifications used in our study . 41

Table 5.1 Summary of the differences between my approach and existing approaches. . 58
Table 5.2 Exception handling concept inventory item analysis results 62

Table 6.1 Source Code Collected for Variables . 69
Table 6.2 Source Code Collected for Exceptions . 70
Table 6.3 Source Code Collected for Generics . 71
Table 6.4 Variables Model Accuracy . 77
Table 6.5 Exceptions Model Accuracy . 77
Table 6.6 Generics Model Accuracy (Non-LOC) . 77
Table 6.7 Generics Model Accuracy (LOC only) . 77

Table 7.1 Notifications used in the user study. 90
Table 7.2 Average time to resolve (seconds) aligned and misaligned notifications for

each concept. 93
Table 7.3 Totals for aligned and misaligned defect resolution. 94
Table 7.4 Aligned and misaligned notifications resolved by each participant 96
Table 7.5 Average resolution times (seconds) for aligned and misaligned notifications

by participant. 96
Table 7.6 Participants whose notification preference aligned exactly with expectations. . 98
Table 7.7 Participants whose overall notification preference aligned with expectations,

but noted a variation in their preference. 98

viii

LIST OF FIGURES

Figure 1.1 Findbugs notification in the Eclipse IDE on checking string equality. 2
Figure 1.2 Findbugs notification in the Eclipse IDE concerning multi-threading. 3

Figure 2.1 EclEmma notifications in the Eclipse IDE. 8
Figure 2.2 Notifications provided by Cobertura regarding code coverage. Figure from . . 10
Figure 2.3 Notifications provided by JSlice regarding a dynamic slice of the program. . . . 10
Figure 2.4 A notification provided by Coverity regarding a race condition. 11
Figure 2.5 Notifications provided by StenchBlossom regarding code smells. Figure from [MHB10a]. 12
Figure 2.6 A notification provided by WitchDoctor regarding a refactoring that’s taking

place. Figure from [MHM14]. 12
Figure 2.7 A source code example for writing to a log file. 13

Figure 3.1 The number of participants in each category expressing the good and the bad
about static analysis tools they have used. 26

Figure 3.2 One of our participant, Matt’s, Participatory Design drawing; (A) shows where
Matt wants the gradient colors and (B) shows the way his current tool repre-
sents severity. 33

Figure 4.1 Distribution of participants based on years of programming experience. 37
Figure 4.2 A notification of a previous null check from FindBugs (FB4). 38
Figure 4.3 An Eclipse compiler notification about unimplemented methods (CMP5). . . 39
Figure 4.4 An EclEmma notification about partial branch coverage (ECL3). 40
Figure 4.5 A notification from the compiler about generics (CMP2). 42
Figure 4.6 Distribution of challenges encountered and notifications that caused them. . 45
Figure 4.7 A notification from EclEmma regarding finally coverage (ECL5). 51

Figure 5.1 Question assessing ability to evaluate generic type instantiation. 59
Figure 5.2 Item removed from original concept inventory. 62

Figure 6.1 An overview of my approach. 68
Figure 6.2 Mapping of developer source code contributions on one class in an open

source repository. 72
Figure 6.3 Variables decision tree model. 78
Figure 6.4 Exceptions decision tree model. 78
Figure 6.5 Generics decision tree model. 79

Figure 7.1 A notification modified for a developer classified as a novice in exception
handling. 87

Figure 7.2 A notification modified for a developer classified as an expert in generics. . . . 88

ix

CHAPTER

1

INTRODUCTION

Software implementation and maintenance are important parts of the software development pro-

cess [Kri00]. It is during these phases that developers complete actions to ensure quality software,

such finding and resolving software defects and refactoring. Many of the actions involved in writing

and maintaining software are manual, tedious and, as a result, error-prone. Tools, known as program

analysis tools, exist for developers to automate some of theses tasks and reduce the effort involved

in tasks like defect finding and resolution [Bru96]. Some program analysis tools, known as static

analysis tools, allow developers to find and resolve defects early in the development process and

occasionally to find defects previously overlooked [AP10; Aye08].

Research has found, however, that developers use these tools infrequently in practice [Aye08;

Ge12; Smi15]. The research in this dissertation provides direction for tool developers and designers

by exploring developer tool use and providing insights into the potential improvements we can

make to developer-tool interactions. To provide concrete motivation for this research, consider

Valerie. Valerie is a hypothetical software developer at a start-up company. She primarily writes Java

code, though she did not learn to program in Java, and uses the Eclipse Integrated Development

Environment (IDE). In her spare time, she builds her knowledge of Java programming concepts

by contributing to open source software. While contributing to the Sun JDK, a fellow developer

suggested she install and use FindBugs. Although she found herself slightly overwhelmed by the

volume of output provided, she decided to narrow in on the more important defects in her current

file.

1

Figure 1.1 Findbugs notification in the Eclipse IDE on checking string equality.

Although Valerie’s goal when using tools like FindBugs is to find and resolve defects, which

requires the ability to interpret the notifications provided by the tools, a secondary goal is to learn

more about Java programming concepts. The first few defects Valerie encountered she was able

to understand and resolve. However, she quickly realized that some notifications are better at

communicating problems while contributing to knowledge than others.

For example, when Valerie encountered the notification in Figure 1.1, she was able to under-

stand and resolve the notification. Along with her existing knowledge, the notification in Figure 1.1

informed her of why what she was doing was wrong and how she can fix it. One the other hand,

when Valerie comes across the notification in Figure 1.2, she realizes that despite her experience

with FindBugs, she is having difficulty determining how to resolve the notification. From previous

bugs, and some research on the web, she knows that an orange bug icon indicates a scary bug and

that by clicking the bug icon she can gain access to more information about the bug.

She first attempts to use what knowledge she does have regarding multi-threading, which she

accrued from struggling with and resolving compiler synchronization warnings, to better understand

2

Figure 1.2 Findbugs notification in the Eclipse IDE concerning multi-threading.

the problem. However, she is unfamiliar with the concept central to the notification in Figure 1.2

(lazy initialization). Though the notification tells her that the problem relates to multi-threading,

she is unable to make a connection between her knowledge regarding multi-threading and the

message FindBugs is attempting to communicate and therefore cannot resolve the notification

without outside help. As done previously with compiler synchronization notifications, she toggles

between the web and her IDE to understand and resolve the notification.

Because the tools Valerie uses have no notion of what she does and does not know, some

notifications communicate in a way that she is able to understand the problem, while others are

not, leading to miscommunication. The goal of this research is to improve how program analysis

tools communicate to developers by providing theories and approaches that identify and utilize the

differences between developer information needs, based on their knowledge, that influence their

ability to resolve tool notifications.

In the following chapters, I will discuss the research I conducted to explore challenges like those

encountered by Valerie and research for developing techniques, frameworks, and tools to mitigate

3

these kinds of challenges. Chapter 2 grounds my research in existing research in Computer Science

and other fields. Study 1, outlined in Chapter 3, answers the following research questions:

RQ1 : What reasons do developers have for using or not using static analysis tools to find bugs?

RQ2 : How well do current static analysis tools fit into the workflows of developers? We define a

workflow as the steps a developer takes when writing, inspecting and modifying their code.

RQ3 : What improvements do developers want to see being made to static analysis tools?

Based on findings from Study 1, which identified tool notification understandability as a barrier

to use, Chapter 4 answers the research question why do developers encounter challenges when inter-

preting tool notifications?. I used the findings from Study 2 to formulate the boxed explanatory theory

above regarding how knowledge affects developers’ ability to interpret and resolve notifications.

Based on these two initial studies, I formulated and evaluated the following thesis:

Program analysis tool use is a form of communication and inability to interpret and resolve

notifications is a result of miscommunication caused by knowledge gaps and knowledge mis-

matches; therefore we can improve tool design by providing the means for tools to classify in-

dividual developer’s conceptual knowledge and adapt notifications accordingly, leading to the

potential for reducing time required for developers to resolve tool notifications, increasing abil-

ity to resolve, and decreasing attempts made when resolving.

Based on the theory proposed in Chapter 4, Chapters 5 and 6 present Study 3, which answers

the following research questions:

RQ1 : Is source code a good predictor of how much developers know about programming concepts?

RQ2 : Does concept-specific source code increase the ability to classify how much developers know

about programming concepts in comparison to a naive model?

In Chapter 5, I outline an approach used to assess developer concept knowledge in preparation

for the work done in Chapter 6 to predict developer concept knowledge. Finally, based the ability to

predict conceptual knowledge, I posit and evaluate the following hypotheses and research question

in Chapter 7:

H1 : Knowledge-based notifications can decrease the time required for notification resolution.

H2 : Knowledge-based notifications increase developer likelihood of resolving notifications cor-

rectly.

H3 : Knowledge-based notifications decrease developer attempts to resolve notifications.

4

H4 : Developer adaptation preferences match expectations, based on existing literature.

Findings from Study 4 suggest the possibility of improving developers’ ability to quickly resolve

notifications. Though the differences observed in this study are small, it is a first step in the direction

of better understanding how to improve tool use for developers. To conclude this dissertation,

Chapter 8 outlines possible directions for future work that builds the foundations set by this research

in this thesis.

The contributions of this dissertation are as follows:

• A categorized list of reasons developers have for not using program analysis tools, accompa-

nied by tool design suggestions provided by developers.

• An explanatory theory for the challenges that developers encounter when interpreting infor-

mation provided by tool notifications.

• An approach for assessing developer depth of programming concept knowledge that builds

on an existing validated approach for assessing breadth of knowledge.

• An approach, developed using existing problem solving research, for adapting tool notifica-

tions based on developer concept knowledge.

5

CHAPTER

2

RELATED WORK

2.1 Program Analysis Tools

Program analysis tools are designed to aid developers when developing software by automating

the writing, analysis, and modification of source code. Often, program analysis is discussed as

synonymous with static analysis [Nie15]. For the purpose of my research, I define a program analysis

tool as a recommendation system that performs program analysis, whether it be static or dynamic

analysis, and provides information to developers regarding the source code being analyzed [Rob14].

Examples of program analysis tools include, but are not limited to, static code analyzers, code

coverage tools, code smell detectors, and refactoring tools [Ado11; MHB10a; Ge12]. Program analysis

tools can be used in integrated development environments (IDEs) as well in most text editors that

can be used for programming, such as Vim 1 or Emacs 2. In the following sections, I will define and

discuss static analysis and dynamic analysis tools separately; the reader should note that although I

discuss static and dynamic analysis separately, it is not uncommon to find program analysis tools

that combine static and dynamic analysis [Ern03].

1http://www.vim.org/
2https://www.gnu.org/software/emacs/

6

http://www.vim.org/
https://www.gnu.org/software/emacs/

2.1.1 Static Analysis Tools

Static analysis tools are designed to aid developers when developing software by statically ana-

lyzing source code, pre-runtime, and providing the developer with feedback about the state of

their code [Ern03]. Typically, static analysis works by examining the current state of the program,

predicting how the program may react in that state at runtime, and reporting any information they

deem necessary to the developer. Static analyses are often more conservative than dynamic analyses;

this is to reduce the potential for false positives, as in most cases static analysis cannot say with

100% certainty what will happen during run-time [Ern03]. Examples of static analysis tools include

defect detectors, such as FindBugs, compilers, code smell detectors, and refactoring tools.

Let’s use the example of FindBugs,3 an open source static analysis tool, to better understand how

static analysis tools work. FindBugs statically analyzes code to report potential defects. FindBugs

determines the potential for defects using bug patterns. Bug patterns are code idioms that map to

errors, found in Java bytecode. Bytecode, in Java, represents the compiled Java class files. Because

FindBugs analyzes code without executing it, there is a heightened risk for false positives. False

positives are defects detected that will never manifest during run-time. When FindBugs finds a

potential defect, it alerts the developer using notifications that provide information regarding the

defect. I will discuss tool notifications in more detail in Section 2.1.3.

2.1.2 Dynamic Analysis Tools

Dynamic analysis tools are designed to aide developers when developing software by analyzing

source code during run-time and providing the developer with feedback about runtime behav-

ior [Ern03]. Dynamic analysis works by executing the program and then making observations about

program execution; because dynamic analysis runs the code, it is typically more precise than static

analysis. Though dynamic analysis can produce more precise results in a similar amount of time

as static analysis, dynamic analysis execution is less likely to generalize to future executions since

it is based on a set of inputs that can, and probably will, change for each execution. Examples of

dynamic analysis tools include testing, code coverage, and profiling tools.

Let’s use the example of Cobertura,4 an open source dynamic code coverage tool, to better

understand how dynamic analysis tools work. Cobertura executes source code using JUnit test cases

and reports to the user what parts of the code got covered during execution and what parts did not.

Because Cobertura executes the source code, it can communicate precisely regarding the flow of

the program during run-time. A static code coverage tool could speculate how much of a code base

would be covered based on test cases, and possibly even a set of inputs; however, it would require

more effort and be more likely to produce false positives than a dynamic code coverage tool. On the

3http://findbugs.sourceforge.net/factSheet.html
4http://cobertura.github.io/cobertura/

7

http://findbugs.sourceforge.net/factSheet.html
http://cobertura.github.io/cobertura/

down side, the test suites a developer writes may not be characteristic of all possible executions of

the program, thereby lowering the generalizability of dynamic analyses.

Figure 2.1 EclEmma notifications in the Eclipse IDE.

2.1.3 Communication via Notifications

One common thread between program analysis tools like FindBugs and Cobertura is that they use

notifications to communicate with the developer. Figure 1.2 and Figure 2.1 provide examples of

tool notifications. A notification, when speaking in terms of program analysis tools, is typically a

combination of visuals and text used to communicate a message to its user; for program analysis

tools, the user is the developer. Text editors like Vim and Emacs rarely include any visual components,

however, because most IDEs include text editors and text-based notifications. Therefore research

on notifications in IDEs can apply to notifications developers receive in both text editors and IDEs.

Therefore, I focus my research on notifications inside IDEs.

8

Notifications across tools vary; some provide lots of text (like FindBugs) with few visual aides,

some use primarily visual means of communications (like Cobertura). Notifications can also have

different goals, which may influence how developers design notifications. For example, the goal

of a notification from Coverity, 5 another static analysis tool, is to explain a potential defect in

the developer’s source code and, ideally, help the developer make a decision about the defect

(i.e. whether and how to resolve). Because Coverity’s goal is to explain, we expect to see textual

notifications that provide that explanation. The goal of code coverage notifications is to statically

show dynamic program behavior and help the developer determine the effectiveness of her test

suite. EclEmma, another code coverage tool, uses colors applied directly to the source code to

communicate as opposed to text. Though EclEmma also uses text to communicate code coverage (i.e.

1 of 2 branches missed on a partially covered if statement), this does not allow the developer

to scan the program for areas in most need of attention. Therefore, EclEmma uses other visuals,

such as the bar visuals in the Coverage View (Figure 2.1) to show coverage on a given package or

class.

The list of tools and notifications tools use can go on and on, but for the purposes of my research,

the general definition I will use for a notification is a combination of visual and textual interfaces

used by a program analysis tool to communicate information to developers about their source code.

Notifications can vary regarding what information and how much detail they provide, however,

there are commonalities across tool notifications that informed this definition, which I will discuss

next.

2.1.4 Typical Notification Components

One reason I talk about program analysis tools as a type of recommendation system is because

they provide information to developers completing software engineering tasks [Rob14]. Another

reason is that program analysis tools use the same strategies defined by Robillard as typical of

recommendation systems: 1) strategies for getting the user’s attention and 2) descriptive interfaces.

Program analysis tools use these strategies when communicating with developers via notifications.

There are a variety of ways that a tool can get the attention of its user [Rob14]. Program analysis

tool notifications get the attention of developers in their IDEs in one or more of the following ways:

icons, dashboards, pop-ups, affordance overlays, annotations, or email notifications. Once the tool

has the developer’s attention, program analysis tool notifications provide descriptive interfaces

that convey information about a developer’s source code. Information is conveyed using some

combination of textual, visual, and sometimes transformative descriptions.

Some tools, like FindBugs and most IDE compilers, use icons to get developers’ attention. Using

the same icons, developers can access more information either by hovering over or clicking the

5http://www.coverity.com/

9

http://www.coverity.com/

Figure 2.2 Notifications provided by Cobertura regarding code coverage. Figure from

Figure 2.3 Notifications provided by JSlice regarding a dynamic slice of the program.

icon. Although the icons are visual, most of the description provided by these tools is textual. As

stated previously, these kinds of notifications are most common with static analysis tools as they

typically need to be more descriptive. However, dynamic analysis tools like Veracode, 6 which

communicate about defects similar to the ones reported by FindBugs and Coverity, also use icons

and text descriptions to pass along information to the developer.

Some tools use affordance overlays or annotations to both get the attention of the developer

and for the descriptive interface. For example, Cobertura and JSlice 7 use affordance overlays in the

form of source code highlighting, as shown in Figure 2.2 and Figure 2.3, to alert the developer of and

communicate about dynamic behavior. Coverity Dynamic Analyzer, 8 which is similar to Veracode,

uses annotations, such as the one in Figure 2.4 in the editor to communicate about defects in the

code.

A small subset of tools use dashboards, such as the one shown to the right in Figure 2.5. Stench-

Blossom, a code smell detection tool gets and maintains a developer’s attention using an ambient

6http://www.veracode.com/products/dynamic-analysis-dast/dynamic-analysis
7http://jslice.sourceforge.net/
8http://www.coverity.com/library/pdf/Coverity-Dynamic-Analysis.pdf

10

http://www.veracode.com/products/dynamic-analysis-dast/dynamic-analysis
http://jslice.sourceforge.net/
http://www.coverity.com/library/pdf/Coverity-Dynamic-Analysis.pdf

Figure 2.4 A notification provided by Coverity regarding a race condition.

dashboard [MHB10a]. At anytime the developer is interested in the information being provided by

the tool, the developer can use options in the dashboard to explore code smells present in their

code base. The description is visual, using color overlays that map to each type of code smell.

Finally, an even smaller subset of program analysis tools provide transformative descriptive

interfaces. Transformative interfaces provide the developer with some idea of how the suggestion

being made would affect the task at hand. For example, WitchDoctor, a refactoring tool, detects

refactorings and then makes the developer aware of their refactoring by offering to complete the

refactoring for the developer. To inform this process, WitchDoctor provides information regarding

the assumed refactoring by showing the developer within their text editor what will happen if the

refactoring is applied, as shown in Figure 2.6.

2.1.5 Breaking Down the Code Developers Write & Tools Analyze

The goal of program analysis tool notifications is to communicate some information to the de-

veloper about her source code about the task at hand. The source code a developer writes is a

runnable manifestation of programming-oriented and human-oriented concepts [VRH04; Big94].

At the lowest, most fundamental level, are programming-oriented concepts, which relate to how the

source code maps to programming language concepts. For simplicity, I will refer to these concepts

simply as programming concepts. Programming concepts can be as simple as the means for storing

and passing data, such as variables, or as complex as the means for structuring data, such as gener-

ics [JG97]. At a more abstract level, human-oriented concepts relate to the high level requirement of

the source code, such as “complete transaction”.

A given notification can be associated with one or more human-oriented concept, though not

all tools communicate about human-oriented concepts. For example, refactoring tools do not

11

Figure 2.5 Notifications provided by StenchBlossom regarding code smells. Figure from [MHB10a].

Figure 2.6 A notification provided by WitchDoctor regarding a refactoring that’s taking place. Figure
from [MHM14].

12

communicate about requirements such as “acquire target.” These kinds of tools typically focus on

programming concepts; refactoring tools attempt to communicate about programming concepts

such as variables and modules. On the flip side, there can be more than one notification pertaining

to a one human-oriented concept and one notification can communicate about more than one

programming concept.

Figure 2.7 A source code example for writing to a log file.

Consider, for example, the following source code in Figure 6.2. The requirement, or human-

oriented concept, at play is “write to log file”. If a notification was attached to this code, it would be

telling the developer something about the code she wrote to “write to log file”. There are multiple

programming concepts at play, which aligns with the types of notifications the developer could get.

In the process of writing this code, the developer could get a notification regarding any number of

programming concepts (buffered streams, exception handling); for example, tools like FindBugs,

13

Sonar, and IntelliJ’s built-in static analyzers notify developers when they have opened a stream

(BufferedWriter in the above example) and there is a possibility the stream that is writing to

the file is not closed. A developer may also get a notification regarding exception handling. Here,

the developer has written code to catch an IOException if it occurs. However, if she did not

implement code to deal with the potential for anIOException she would get a compiler notification

communicating the need to do so.

Research related to mine falls under the following categories: evaluating and improving tool us-

ability, improving notification understanding and resolution, predictive user models, and developer

knowledge representation.

2.2 Program Analysis Tool Usability

There have been many studies on program analysis tools, many of which focus on their correctness

and functionality [Aye08; Bes10; Dug00; Luk05]. Unlike existing work, which typically focuses on

one type of program analysis tool, my work focuses on developers’ perception on using different

types of program analysis tools, what may have caused their perceptions, and how we can build on

or improve their perceptions. Perception plays an important role in when considering human and

computer interactions [Das02] and can be influenced by a number of things, such as the subjective

preferences of the user.

Pettit and colleagues studied the effect of enhanced compiler messages for students [Pet17].

They found no significant improvement, based on likelihood of successive compiler errors, compiler

error occurrence, and progress students make towards successful project completion. Their en-

hancements were designed without rationale, only focusing on students. Also, the information the

was same no matter how much students already knew. Enhancements were made based somewhat

on assumed knowledge; the adaptations I am proposing would be based on actual knowledge. I

also assessed other types of enhancements, such as inclusion of examples and links to external

information.

Hamou-Lhadj and Lethbridge surveyed trace exploration tools to determine how these tools

can be used by developers and potential improvements to trace exporation tools [HLL04]. Based on

their evaluation of the tools, they found that areas for improvement for these type of tools include

visibility during trace removal and automated suggestions. Pacione and colleagues conducted a case

study on five dynamic visualization tools that perform either static or dynamic code analysis and

observed the output provided [Pac03]. Pertaining to usability, they found that level of abstraction

can make a difference when explaining large scale problems.

Storey and colleagues ran user experiments with 12 developers on two approaches for presenting

software structure in a reverse engineering system [Sto97]. They found that certain interfaces are

better for low-level tasks and that users prefer reverse engineering tools with consolidated interfaces,

14

rather than multiple windows. Bennett and colleagues conducted interviews and user experiments

to evaluate the usability and potential improvements of their sequence diagram creation and

exploration tool [Ben08]. Sequence diagram tools create sequence diagrams using static analysis,

dynamic analysis, or both. Much of the feedback developers provided suggested search and selection

highlighting are both useful feature for sequence diagram tools, though there are improvements

that can be made to existing implementations.

Ayewah and Pugh conducted a study where they claimed that static analysis tools should help

engineers find bugs as early as possible in the development cycle, when they are cheap to fix [AP08].

They interviewed 12 FindBugs users by phone and conducted a controlled study with 12 students

to see how they use FindBugs and handle defects that are labeled “not a bug”. Ayewah and Pugh

also conducted a study on using checklists for triaging bug reports [Ayeb]. In their study, they asked

students to complete a checklist based off the warnings produced by FindBugs in order to identify

warnings that are most important to the users. The checklist gave different scales used to measure

warning severity and relevance and was used for 13 different warnings.

Khoo et al. examined and focused on the interface of static analysis tools and how the interface

could be improved [Kho08]. They developed a user interface toolkit called Path Projection that uses

program visualizations to help developers walk through the error reports produced by static analysis

tools. Path Projection was designed to improve and simplify the process of triaging bug reports, or

labeling bugs as a false or true positives, by utilizing checklists to systematically label bugs. This

research is similar to my work in that they look at improving the static analysis tool user experience.

My research builds on this work by investigating not only improving the user experience, but also

finding out why these improvements need to be made from the developers who use them.

Heckman and Williams conducted research in an attempt to develop a benchmark, FAULT-

BENCH, that would help developers compare and evaluate static analysis alert prioritization and

classification techniques [HW08]. The overall goal of their research was to make using static analysis

tools easier and more useful to developers. My work is related in that I am also looking for ways to

improve the current state of tools for developers. Layman et al. recruited 18 participants to investi-

gate factors that developers may consider when deciding whether to address a defect when notified

of it [Lay07]. This study is related to my work in that they are also interested in learning more about

how developers use tools available to them and how usage can be made easier. My work builds on

these works by focusing on various aspects of using program analysis tools, including how users

interact with the tools.

2.3 Aiding Notification Resolution

Existing research has focused on easing the process of understanding and resolving notifications [Har10;

Muş12b; Pha15; Fri14] from one particular tool. Rather than studying program analysis tools sep-

15

arately, we believe it is more fruitful to understand the challenges developers encounter across

multiple program analysis tools. As we describe in this section, existing studies that examine multiple

tools typically either focus on tools of the same type (i.e. multiple compilers) or helping developers

make informed choices among tools. My work is related in that our findings can be used to improve

the design of tools to better support developers. My work differs in that we investigate different

types of tools to identify general challenges developers encounter when interpreting notifications

across tools.

Much of the research on improving developers’ ability to interpret tool notifications has focused

on compiler notifications [Har10; Tra10; Bar14]. Hartmann and colleagues developed a social recom-

mender system, HELPMEOUT, to better assist novices with understanding and resolving compiler

notifications [Har10]. They found their tool provides useful fixes about half of the time. Traver inves-

tigated why developers have difficulty with compiler notifications and ways to improve compiler

notification design [Tra10]. Based on his findings, Traver developed compiler notification design

principles, which includes using consistent messages and including more visual aids.

Nienaltowski and colleagues studied novice developers’ ability to identify errors in their pro-

grams and how we can better support that process [Nie08]. Rigby and Thompson studied novices’

use of Eclipse and Gild, a customized version of Eclipse featuring “novice-friendly” compiler notifi-

cations [RT05]. Muşlu and colleagues developed QUICK FIX SCOUT, an extension to Eclipse Quick

Fix, to ease the process of determining an optimal fix [Muş12b]. They found programmers could

more quickly assess and apply quick fixes when able to easily reason about fix trade-offs. Following

up on work with QUICK FIX SCOUT, Muşlu and colleagues explored the possibility of improving

IDE recommendations, and the ability for developers to determine the best fix for their code, by

considering the whole code base rather the local context of the notification [Muş12a]. Barik and

colleagues studied how developers reason about compiler notifications to improve tool support for

understanding and resolving tool notifications [Bar14]. Compiler notifications are not the only type

of notifications a developer might encounter, further supporting the need for cross-tool investiga-

tions. Studying tool notifications across tools, as we have, increases the likelihood our findings can

generalize to a variety of tools.

Cross-tool studies that do exist focus on helping developers decide what tools to use rather than

tool improvement. Mettrey evaluated five expert systems tools on factors such as performance, to

aide developers in selecting one for their projects [Met91]. Wagner and colleagues compared two

analysis tools that detect defects to evaluate their efficiency [Wag08]. Other tool evaluations have

had the same goal [Roy09; Zhe06].

Though to our knowledge there are no studies that explore the applicability of communication

theory to tool use, there are studies that explore the applicability of other theories to tool use [Bar14;

Xia14; RH01]. One is my prior work on how developers visualize compiler messages; we found

that self-explanation theory can be used to explain how developers work through compiler error

16

messages [Bar14]. In other prior work, we used Diffusion of Innovation theory to explore factors

that influence security tool adoption [Xia14]. Similarly, Rienmenschneider and Hardgrave explored

why tools do not get used using the Technology Acceptance Model, based largely on the Theory of

Reasoned Action [RH01]. Lawrance and colleagues used information foraging theory to propose a

theory of information foraging for how programmers navigate code when debugging [Law13].

2.4 Predictive User Models

Existing research has explored the idea of creating and using predictive user models both in the

design of intelligent tutoring systems (ITS) and adaptive user interfaces (AUI). Research also exists

that uses code as a proxy for knowledge [Fri10]. While related, this research proposes models

that predict knowledge of source code; my research proposes models that predict knowledge of

programming concepts for adapting tool notifications.

Both ITS and AUI use models of user knowledge to adapt to their users, based on the user’s

experiences [Mur99a]. ITS pose questions to students to model knowledge of concepts and adapt

lesson plans. In contrast, I used source code history to model knowledge for adaption of tool

notifications. Amershi and Conati explored using machine learning rather than knowledge-based

user models to deal with the drawback of using knowledge-based user models, as most ITS do [AC07].

Stamper and Barnes proposed a method for using student data, such as the code they write, to

improve ITS with adaptive hints for programming mistakes [SB09]. Similarly, my research explores

using source code and machine learning to predict user knowledge but for adaptive tool notifications.

There are a variety of AUI used in different Human-Computer Interaction contexts, many of

which use task or domain models [Sch96]. Most relevant to our models in the context of AUIs are

works that build and apply user models, such as FUSE, which creates user models based on static

and dynamic properties of the user to assist with user interface development [LS96]. Most relevant to

our research are the models proposed by Zou and colleagues for adaptive menus in Eclipse [Zou08].

This AUI’s models are built based on how often developers use menu items to remove menu items

that are used infrequently; we built models based on the concept-specific code a developer writes

to adapt notifications to their experience.

Using source code to represent knowledge relates closely to the degree-of-knowledge models

proposed by Fritz and colleagues to determine how familiar a developer is with a particular portion

of a codebase [Fri10]. Their models predict how much a developer might know about a given piece

of source code in a codebase based on how often they have visited or edited that part of the code.

Other tools exist that make use of developer source code to make predictions without models. Most

relevant is Stylos and colleagues’ tool Jadeite which determines API usage examples to provide to a

developer based on code other developers have written [Sty09]. Along the same lines, Perscheid

and colleagues explored the notion that expertise is a good metric for determining who would

17

understand a fault or failure when testing best in a code base [Per12].

Other research has explored how user actions can be used to represent knowledge, mostly in the

context of games and learning. Eagle and colleagues conducted research to explore the relationship

between the interactions students make in games and understanding science concepts embedded in

those games [Eag15]. Hicks and colleagues developed an approach to modeling student interactions

when using programming tutors and educational games, like BOTS, for predicting the best hints to

provide when they are having trouble [Hic14].

18

CHAPTER

3

STATIC ANALYSIS TOOLS USE

One common type of program analysis tool that developers use when writing code is known as a

static analysis tool. As described in the previous chapter, static analysis tools automate software

development tasks to reduce developer effort, especially when completing tasks such as finding and

resolving defects. However, despite the benefits of using static analysis tools to find bugs, consistent

usage of these tools is not very frequent [Aye08; Ge12].

There have been studies to investigate ways of improving static analysis tools [Bes10; Kho08].

However, none look at what the tools do for a developer, what could be improved and why these

improvements might help. The study outlined in this chapter provided an improved understanding

of why software developers are not using static analysis tools and how current tools could be

improved to increase usage based on developer feedback.

To answer the question why do developers not use program analysis tools, I conducted interactive

interviews with 20 professional developers to better understand why they do not use static analysis

tools to find bugs when writing code [Joh13b]. For this study, I focused on static analysis tools used

to finds bugs. This includes tools like FindBugs, Lint [Joh78] , IntelliJ [Int] (which includes built-in

static analyzers), and PMD [Pmd]. FindBugs will be referenced the most as it is the tool I chose to

use during the interviews.

19

Table 3.1 Descriptive statistics reported by participants.

Participant Open Source Tools Closed Source Tools Local

Abby FindBugs IntelliJ Yes
Adam CheckStyle, FindBugs, PMD IntelliJ Yes
Andy FindBugs, Lint Jtest Yes
Chris CheckStyle, FindBugs, Lint Coverity Yes
Cody Dehydra - Yes
Frank - - Yes
Gordon Lint, CheckStyle, FindBugs - Yes
Jake FindBugs, Lint FlexLint, Klocwork Insight, Visual Studio Yes
James CheckStyle, FindBugs, Lint Visual Studio Yes
Jason FindBugs, Lint - Yes

John
CheckStyle, Copy/Paste Detector(CPD),
FindBugs, Lint, PMD & CodePro

- Yes

Jordan CheckStyle, FindBugs, PMD JTest Yes
Josh FindBugs, Lint Coverity No
Lee CheckStyle, FindBugs, Lint Visual Studio Yes
Matt Lint FlexLint, PyCharm Yes
Phil - - Yes
Ray CheckStyle, FindBugs - Yes
Ryan FindBugs, Ling Coverity Yes
Steve CheckStyle, FindBugs, Lint, CPD IntelliJ Yes

Tony
CheckStyle, FindBugs, Lint, PMD,
CPD, cpplint, Splint

Coverity Yes

20

3.1 Exploring Developer Tool Use

For this study, I conducted interviews with software developers. Each semi-structured interview

lasted approximately 40-60 minutes and, with the participant’s consent, was recorded. By conducting

“semi-structured” interviews, I aimed to achieve the flexibility needed to get as much detailed

information as possible [HA05]. I prepared a script of questions for the interview, but would add

or omit questions on the fly depending on how detailed a participant was in their responses. We

created and modified the script as we conducted trial interviews; any changes made to the script

was based on the responses we got from our 4 trial participants [Joh12].

Upon completion, I manually transcribed each session. I performed qualitative analysis on

the transcripts by “coding” the transcriptions. The pre-interview questionnaire, interview script,

coding categories with examples, and participatory design sketches can be found in Appendix A.

This process is discussed in detail in Section 3.1.6.

3.1.1 Participants

I conducted this study with a group of 20 participants. Although this seems like a small sample, I

followed a similar methodology to that of Layman et. al.’s study that only had 18 participants [Lay07].

I recruited participants using an electronic recruitment flyer that was sent out to industry contacts to

then be sent to developers within their company. Sixteen participants were, at the time, professional

developers at a large company and 4 were graduate students at North Carolina State University with

previous industry experience. Participants’ years of development experience ranged from 3 to 25

years. We did not explicitly ask participants about their experience building static analysis tools,

however, based on conversations approximately 2 participants had tool building experience. We

interviewed two participants remotely, one by phone and one by video chat, due to location differ-

ences. Each participant filled out a short questionnaire used to collect demographic information

prior to their interview.

Table 3.1 shows the statistics and background information gathered from the questionnaire and

interviews. The first column lists the participants’ pseudonyms, given for confidentiality purposes.

The second and third columns show the open-source tools and closed-source tools that they have

used to find bugs. If a space has a “-”, it indicates no response from the participant.

3.1.2 Research Questions

For this study, I answered the following research questions:

RQ1 : What reasons do developers have for using or not using static analysis tools to find bugs?

21

RQ2 : How well do current static analysis tools fit into the workflows of developers? We define a

workflow as the steps a developer takes when writing, inspecting and modifying their code.

RQ3 : What improvements do developers want to see being made to static analysis tools?

I asked these questions because answers to these questions are important to the progression

through my dissertation and can give toolsmiths and researchers areas for future work and improve-

ment in the area of static analysis tool usability. Research has shown that the way a tool interrupts a

developer’s workflow is important therefore I also wanted to specifically investigate this aspect of

tool usage [Rob04; Glu07]. The interviews focused on developers’ experiences with finding defects

using static analysis tools. Learning developers’ relevant experiences and observing how they use

static analysis tools to find bugs may shed some light on why these tools are underused. I organized

the interviews into into three main parts: Questions and Short Responses (Section 3.1.3), Interactive

Interview (Section 3.1.4), and Participatory Design (Section 3.1.5).

3.1.3 Part I: Questions and Short Responses

During part 1, Question and Short Response, I asked developers questions related to their general

usage, understanding, and opinion of static analysis tools in order to answer RQ1.

Some of the questions I asked include:

• Can you tell me about your first experience with a static analysis tool?

• Can you remember anything that stood out about this experience as easy or difficult?

• Have you ever used a static analysis tool in a team setting? Was it beneficial and why?

• Have you ever consciously avoided using a static analysis tool? Why or why not?

• What in your opinion are the critical characteristics of a good static analysis tool?

3.1.4 Part II: Interactive Interview

The second part is what I called the “interactive interview”. The goal behind the interactive interview

is to be able to observe developers actually using a static analysis tool. This allowed for the gathering

of more detailed information as to how developers are using their tools. I used the information

obtained during this portion to address RQ2. I asked participants to explain what they are doing out

loud [Lew82] so I could get a better understanding of their workflow and thought process. Practice

interviews before this study revealed that using the interactive interview portion produced more

detailed information regarding when and how developers use their static analysis tools [Joh12].

Some of the questions asked during this portion include:

22

• Now that you have run your tool and gotten your feedback, what is your next move(s)?

• Do you configure the settings of your tool from default? If so, how?

• Does this static analysis tool aid in assessing what to do about a warning?

• Do you feel that “quick fixes” or code suggestions would be helpful if they were available?1

For confidentiality reasons, not all participants could use their own workstation for this part of

the interview. For those who could not, I provided 6 open source projects in Java, such as log4j [Log]

and Ant [Ant], and asked each participant to run FindBugs on one of them. I chose FindBugs because

it is one of the most popular and mature open source static analysis tools for Eclipse. Due to technical

difficulties, the remote interviews could not fully experience the “interactive” portion. Each remote

participant was given a scenario of static analysis tool usage and asked to, first, explain their thought

process in walking through that particular scenario. I then asked the same questions as I would

have asked if they had been local.

3.1.5 Part III: Participatory Design

The last part of the interview allowed participants to make design suggestions for improving static

analysis tools. I utilized a concept called participatory design [Spi05], which involves getting stake-

holders (in this case, the participants) involved in the design process by allowing them to show what

they want instead of saying it. In order to promote creativity, each participant was given a blank

sheet of paper and asked to sketch what they wanted their tool to look like and describe how it

should work [Joh12]. I did not require participants to draw something, but 6 of them did. The rest of

the participants gave verbal descriptions of tool features they desired.

3.1.6 Coding Interview Responses

After completing the interviews, I manually transcribed each interview. Then, I coded the transcrip-

tions. Coding is a process that is meant to make referencing transcriptions quicker and easier [Gor98].

I used Gordon’s basic steps to code the interview transcripts and used the codes to help organize the

Results (Section 3.2). According to Gordon’s steps, before coding an interview, “coding categories”

need to be defined. These should be general enough for relevant information to be grouped together

but detailed enough that a concrete example only falls under one category. Because of this, it is

possible to have “emergent” categories that may need to be defined after reading the transcriptions.

I developed and used the following coding categories:

1Participants were only asked about quick fixes and code suggestions being useful when they mentioned, either during
the Question and Answer or Interactive Interview, that they either a) find quick fixes useful, b) felt that the tool should be
more helpful or c) did not understand how to fix the defect we presented them with.

23

• Tool Output: anything related to the output produced by the tool (for example, false positives).

• Supporting Teamwork: anything about using static analysis tools in a team or collaborative

setting

• User Input and Customizability: points made about the customizability of the static analysis

tools (for example, modifying rule sets)

• Result Understandability: anything said about the ability or inability to understand or interpret

the results produced by a static analysis tool

• Workflows: anything related to the steps a developer takes when writing, inspecting and

modifying their software (for example, tool integration)

• Tool Design: the proposed tool design ideas from our participants.

Examples of each of these categories from the transcriptions are as follows:

Tool Output

Jason: “. . . like I mentioned with FlexLint it gives you so many warnings and sifting through

them is so, arduous that whenever I just look at it I’m like ehhh forget this.”

User Input/Customizability

Andy: “. . . it’s like is this list prioritized by you know what’s important to me? No. You know?

And there may be a default listing that should be prioritized because like this one’s inefficient.”

Supporting Teamwork

John: “The only reason I like the batch results is to communicate, broadcast to the team a

sense of progress or lack of progress.”

Result Understandability

Matt: so now I wanna know why raising a string exception is bad. Like what should I be doing

instead? Since it thinks it’s a problem. And so none of these really help me.

Workflows

Mike: “Clang is my favorite. It’s built into the compiler. You don’t have to invoke anything

special.”

Tool Design

Chris: “I don’t mind the idea of the actual source code itself having some plasticity . . . let’s say

the fourth line there was some error here. . .having the 5th line drop down and having the

content expand with maybe all sorts of annotations about my code.”

24

The next step in Gordon’s methodology is to assign “category symbols” to each category for

easier indexing and processing of information. Gordon then suggests finding and classifying the

relevant information in the transcriptions using the category symbols. In my set of codes, each

coding category had its own color as a “symbol”; if a portion of a participant’s transcription fell

into one of the categories, the text would be highlighted the same color as its respective category. A

participant’s coded interview could contain multiple categories or even multiple data items for one

category. To ensure consistency, only I was responsible for coming up with the coding categories

and “symbols” and going through the transcriptions to apply them. The last step is to check the

reliability of the codes. For this study, once the coding was complete, I passed the documents over

to other contributors to look over. If there were any discrepancies we discussed and resolved them

as a group. This includes items that could fall into more than one category; in this situation, either

a new, more specific, category or a “sub-category” was created for the item. The purpose of the

categories are to organize the data in a relevant and useful manner; they are not meant to directly

correlate with the research questions. The next section discusses findings from this study.

3.2 Barriers to Tool Use

In this section, I will discuss the results obtained from the interviews. I answered my research ques-

tions by linking the questions to coding categories and interview parts. My first research question

(RQ1) was answered by observing the results categorized under “Tool Output,” “Supporting Team-

work,” “User Input and Customizability,” “Result Understandability” and “Developer Workflows”;

the information collected in these categories could be reasons why developers are or are not using

static analysis tools. My second research question (RQ2) was answered by observing the results cate-

gorized under “Developer Workflows.” My third research question (RQ3) was answered by observing

the results categorized under “Tool Design”; most of these results are from the Participatory Design

portion.

In each category, I expected there to be negative and positive remarks about current tools, both

of which are equally important in answering my research questions; anything positive could be

a reason for use while anything negative could be a reason to discontinue use. For each coding

category, I separated the relevant statements into positive statements and negative statements; if

something good is said about a static analysis tool it is considered a positive comment and vice versa

for a negative comment. In Figure 4.6, we can see that the majority of participants have had problems

with tool output, customizability and workflow integration, and all but one of participant has had

problems with understanding the results of tool analyses. Tool design is not included because this

category was defined to capture the developers’ ideas for improving static analysis tools. Their

reasons for wanting the features are captured in the other categories.

25

7

14

7
9

3

17

10

19

7

15

0

5

10

15

20

Positives Negatives Positives Negatives Positives Negatives Positives Negatives Positives Negatives

Tool Output Supporting Teamwork User Input and
Customizability

Result Understandability Developer Workflows

N
um

be
r

of
 P

ar
ti

ci
pa

nt
s

Figure 3.1 The number of participants in each category expressing the good and the bad about static
analysis tools they have used.

3.2.1 RQ1: Reasons for Use and Underuse

The interviews revealed that there are a variety of reasons developers may have for choosing to

use a static analysis tool to find bugs in their code. One of the obvious reasons is because too

much time and effort is involved in manually searching for bugs. Five out of 20 participants felt

that because static analysis tools can automatically find bugs, they are worth using. During his

interactive interview, Jason told us “anything that will automate a mundane task is great.” In other

words, one reason for using static analysis tools is that they automate the process of finding bugs.

Another reason developers might use a static analysis tool is if it is already available in the

development environment and ready to be used. For 3 participants, this was the case. Development

environments such as IntelliJ and PyCharm come with built-in static analyzers, which requires

little extra effort on the developer’s part. Two participants, Matt and Adam, used PyCharm and

IntelliJ regularly and liked the fact that static analysis was already integrated. For 7 participants, a

good reason to use static analysis tools is to support team development efforts. According to Josh

and Andy, static analysis tools do this by raising awareness of the potential problems, or “dumb

mistakes,” in the code earlier in the development process. For Cody and Ray, static analysis tools

are useful for communicating and enforcing coding standards and styles on development teams.

Some developers enjoy using the static analysis tools they use to find bugs because of the level of

customizability. Three participants fit into this category. According to James, the customizability of

a tool can play a large part in the volume and quality of output developers get.

Although some participants could find reasons to use static analysis tools to find bugs, most

of our participants brought up conflicting concerns that could make the decision to adopt and

regularly use static analysis tools less obvious.

Tool Ouput. Tool output was a popular discussion topic. Out of the 20 developers I interviewed,

14 expressed the negative impacts of poorly presented output. Static analysis tools are known to

26

produce false positives and these false positives can “outweigh” the true positives in volume [She11].

Another known fact is that, especially with larger projects, the number of warnings produced by

a tool can be high, sometimes in the thousands [Ayea]. Some participants felt, however, that false

positives and large volumes of warnings would be less burdensome if the way the output is presented

was more user-friendly and intuitive. Cody, who likes using Dehydra, finds himself frustrated at

times because the results are dumped onto his screen with no distinct structure causing him to

spend a lot of time trying to figure out what needs to be done. Jason wishes that his tool’s output

would be a “slice” that shows what the problem is and what else could be affected in order to more

quickly assess what is or is not important. This “slice” should be taken from the entire project, using

call hierarchies, to show which parts are affected by each defect. During his interactive interview

he commented on a previous experience with FindBugs. He had a large list of warnings to scroll

through but without there being any context to the problems it just seemed like “a bunch of junk

to sift through,” which made him not want to bother using it. It may be worth investigating how

valuable an output like this would be.

Collaboration. In industry, software development is often a team effort. For 9 participants, lack

of or weak support for teamwork or collaboration was one reason that teams, as well as individual

developers, may not adopt or regularly use static analysis tools. According to John, although static

analysis tools are useful for trying to enforce coding standards, there is no easy way to share the

settings with other people on the team so it ends up being a cumbersome manual process and

causing confusion when the standards need to be changed. Many participants mentioned the desire

for a way to easily communicate and collaborate when using their static analysis tool, especially in

a team setting. Although static analysis tools can be beneficial in team settings, current tools are

not collaborative enough for some developers. Newer versions of FindBugs offer a cloud storage

feature that can be used store, share and discuss warning evaluations [Fin]. Although a feature like

this does make it easier to communicate and share warning evaluations between developers, to add

a comment to a bug or current evaluation a web browser is needed. This takes the developer out of

context and out of the development environment which could demotivate some individuals from

checking them when they should.

Customizability. For 17 participants, customizability was important however many tools are

not trivial to configure and do not accommodate the customizations that developers want. False

positives and large volumes of warnings are well-known downsides to using static analysis tool to

find bugs. However, Frank told us he believes that the way a tool is configured plays a large part

in the output a developer gets. John stated during his interview that “many tools are so hard to

configure, they prevent you from doing anything.” Sometimes it is difficult just to get to the menu

where the options for configuring a particular feature are, which participants Matt and Josh agree

with. One participant, Jake, found himself in an interesting situation during his interactive interview

where he could not figure out how to customize his tool and wound up having to search the web

27

to locate the tool’s preferences. A common problem expressed by most of the participants is the

inability to temporarily ignore or suppress certain warnings. Although some static analysis tools

allow developers to turn off certain filters, not all developers are comfortable with turning warnings

completely off. Matt, for example, is afraid that he may not remember to turn it back on. The notion

of dismissing or ignoring static analysis warnings may be too coarse; as Jordan noted, he would

prefer if static analysis tools offered a way of recording his judgement about a given warning. More

sophisticated judgements may include things like “this warning isn’t a problem now, but may be in

the future if the following conditions are met. . . ”.

Result Understandability. The main objective when using a tool like FindBugs is to learn what

defects are in the code so that problems can be removed. A developer not being able to understand

what the tool is telling her, according to participants, is a definite barrier to use. Nineteen out of 20

participants felt that many static analysis tools do not present their results in a way that gives enough

information for them to assess what the problem is, why it is a problem and what they should be

doing differently. James told us during his interview that “it’s one thing to give an error message, it’s

another thing to give a useful error message.” When talking about the Eclipse Python plug-ins, he

also stated, “I find that the information they provide is not very useful, so I tend to ignore them.” A

few participants felt that it would be helpful to have links to more details or examples in the error

reports. In some situations more information is needed to understand exactly what the problem is

and why it is a problem; understanding why a defect is a problem can help the developer better

assess whether the error is a false positive and try to avoid repeating the same problem. Ryan told us

during his interactive interview that a start would be using “real words,” or a more natural language,

to explain the problem.

The most frequently mentioned difficulty when using static analysis tools was lack of or ineffec-

tively implemented quick fixes. Most participants expressed interest in having their tool provide

code suggestions or quick fixes that assist them when attempting to fix a bug; Abby proclaimed “if

you can tell me it’s an error, you should be able to tell me how to fix it.” Jordan strongly agrees; he

loves tools that have quick fixes and hates tools that do not. According to the interviews, these fixes

do not have to be automatic; some prefer that code suggestion previews be used or possibly using

examples to get a better understanding of how to fix the problem. Some participants expressed

interest in but skepticism toward integrating quick fixes into static analysis tools. For example,

during Jordan’s interactive interview, he noted that sometimes when using multiple tools, they may

have conflicting quick fixes or solutions. In Frank’s past experiences with automated code changes,

he has had to do manual refactorings because something was done wrong; because of this, he

prefers to use find and replace to make his own changes. Another participant, Adam, was concerned

with knowing whether the semantics of his code would be preserved after applying a quick fix. Most

static analysis tools, if they offer quick fixes, leave it to the developer to figure out exactly what has

been done after it has been done. Almost all of the participants agreed that effectively designed

28

quick fixes can help them to better understand the problems tools tell them about, leading to a

better sense of productivity for the developer.

3.2.2 RQ2: Workflow Integration

The most common topic during the interviews was tool and environment integration. Sometimes

a developer’s process includes running a static analysis tool, but more often it is not part of a

developer’s workflow to stop and run a tool in the middle of working on some code or a specific

task; she usually prefers finding a “stopping point” in her code to run the tool [Lay07]. Analysis of

these interviews revealed that while this is true, there are many different ways that developers may

want their tool to fit into their development workflow. For example, some developers prefer that the

tool run in the background; it is easier for them to figure out what is wrong if they are in the process

of doing it and do not have to think about invoking the tool. On the other hand, some developers

do not use IDEs, so if they are to use a static analysis tool, compiler integration is very important.

Nineteen of the 20 developers I interviewed expressed the importance of workflow integration to

them and how these needs have been or should be met.

For some participants, there are features of static analysis tools they have used that helped the

tool better integrate into their workflow leading to increased usage of the tool. In fact, John felt that

static analysis tools can be used to help organize a workflow, based on the results it produces. For

example, running a static analysis tool on some code for the first time can be a good indicator of

the kinds of bugs the tool finds and that may be present; this can give an idea as to how detailed of

an analysis the tool provides, possibly giving a better idea of when it would be best to run it. Of all

the tools Adam has used in the past, he much preferred to use IntelliJ and its built-in static analysis

to find bugs; they are tightly integrated making it seem more “real time”. For these participants,

as well as a few others, integration with the development environment plays a major role in their

decision to use or continue using a static analysis tool. Common standalone static analysis tools like

FindBugs and PMD have the ability to integrate with IDEs like Eclipse and NetBeans which becomes

especially important when using more than one static analysis tool at a time, as we learned from

discussing a past experience of Steve’s where he used 3 different static analysis tools at once. Jordan

and Chris like how FindBugs, PMD and CheckStyle fit into their development processes; for Jordan,

it is an integral part of his workflow. For the majority of participants, however, current static analysis

tools are not doing enough to effectively integrate into their development process.

One of the biggest demotivational forces on a developer when it comes to using a static analysis

tool to find bugs is when it is what Tony calls a “disjoint process.” Many participants, especially those

who do not use IDEs, do not like when they have to go out of their coding environment to use a tool

or view the results produced by the tool. For example, Frank, Lee, James and Andy commented on

how “painful” it was during their interactive interview to have to switch perspectives in FindBugs to

29

explore the complete listing of bugs. According to Lee, having to open another perspective to know

what is going on is a guarantee that unmotivated people will not do it. For Frank, although it is nice

that the results are hidden so that you are not overwhelmed, having to go back and forth and drill

down to see the bugs requires extra effort and is disruptive to his workflow. Other tools participants

had similar complaints about was Coverity and Lint for C/C++ projects. For Ryan and Tony, the

biggest downside to using Coverity is that it is not capable of being integrated into their coding

environment, leading to a lot of clicking back and forth between their editor and the static analysis

tool. Phil does not like using Lint because of the fact that he has to “go out of his way” to do so.

Some participants made it clear, however, that even if the tool is integrated with their devel-

opment environment, it is still possible that the tool does not integrate well into their develop-

ment process. For example, Mike does not use IDEs so using a tool that integrates well with an IDE

does not fit well into his development process; he likes using Clang because it can be tied into his

compiler which does not require a “development environment”. According to Gordon, one of the

key problems with static analysis tools is that at times they can prevent him from being productive.

One way this can happen is when the tool slows the developer down by taking a long time to run,

which was a common complaint amongst participants in this study. From Jason’s experience, he

believes that “if it disrupts your flow, you’re not gonna use it.” Jason’s statement rang true among

other participants as well, like Steve who had used various tools in his past but did not like to use

FindBugs because, even though it is IDE integrable, it runs slow. IntelliJ, which contains built in

static analyzers, utilizes idle time when reporting bugs in an attempt to prevent the problem of

interrupting the developer’s workflow but for Matt, it can still be bothersome. Jason believes that

the problem with current static analysis tools is that they are not capable of running well on larger

code bases, leading to a break in his “development flow” as he waits for the tool to catch up.

In terms of workflow, participants valued using static analysis both to fix bugs once they are

introduced into the program, but also later in the development process. From a workflow standpoint,

it is valuable to fix potential bugs when they are entered into a program because the necessary

context to understand the bug is already in the developers’ working memory. In contrast, fixing bugs

later is difficult because a developer must recall the context to analyze the corresponding static

analysis warning. This contrast is similar to the difference between “floss refactoring” and “root

canal refactoring,” where the former involves restructuring code as it is being worked with and the

latter involves refactoring by finding the “worst code” and dealing with that first [MHB08]. Root

canal refactoring is a discouraged practice and its analog in static analysis – finding the most severe

static analysis warnings in a whole codebase and dealing with those first – may also be a wasteful

practice. Research has shown that many static analysis warnings in working systems do not actually

manifest as program failures [Ayea].

30

3.2.3 RQ3: Tool Design

My main research goal to determine how we can improve static analysis tools for developers. The

best way to do this is to find out how developers want their tool to be designed. Most of the proposed

designs are for warning notification and manipulation or quick fix display. Participants made some

other interesting proposals which will also be presented.

Quick Fix Design. Ten participants made a suggestion related to the way in which a quick fix

should be displayed. Most participants wanted to be able to preview the fix and how it is going to

change their code before they apply it. Abby and Tony recommended splitting the code editor to

show a diff of the code, using highlighting to show what code has changed or been added to their

code. On one side there would be the code now and on the other the code once the fix is applied.

Some felt that you should be able to see the fix before applying it, but then also manually apply it

so that you know the fix is being applied without introducing any new problems. One participant,

Mike, prefers not to have quick fixes at all because he feels the error messages are enough to assess

what to do about an error.

One interesting quick fix design idea, which came from Ryan during his interactive interview, was

to have what he called a “three option dialog box” available when applying a quick fix. This dialog

box would pop up upon a click to fix the bug and there would be three choices: apply the entire fix

(default option), do not apply the fix or step by step apply the solution allowing the developer to

decide which parts of the solution they would like to keep. Static analysis tools like FindBugs and

IntelliJ offer some quick fixes. However, they do not give a full context preview of the changes that

will be made, leaving it to the developer to manually ensure that the fix was applied correctly and to

their liking.

Warning Notification and Manipulation Design. All 20 participants told us when and how they

wanted to be notified of errors in their code. The theme in this category is “fast.” Developers want

tools that provide faster feedback in an efficient way that does not disrupt their workflows. For some

participants, this meant running the tool in the background of the IDE so that feedback occurs as

soon as a problem is detected. For other participants, this meant running the tool at build time or

compile time. In this way, the results are presented when the developer is at a predefined “stopping

point." [Lay07].

Overall, participants found that current static analysis tools are not fast enough when providing

them with feedback; this quickness should be accompanied with discretion as the developer does

not want the tool to break their thought process.

Participants also thought it would be beneficial to have the ability to easily make “judgements”

about defects, such as setting it aside to view later, save these judgements and share them with other

developers. Many participants suggested that static analysis tools should allow developers to ignore

specific defects and move them to their own list for later viewing, a form of temporary suppression.

31

Most tools, if they allow the developer to ignore specific warnings, only allow the developer to turn

off or suppress a bug category for particular line of code using a comment-like annotation, which

Gordon told us makes the code “smell”. Developers would like to have the option to ignore each

individual defect in case they either do not want to fix it and do not want to be bothered by it again

or do not want to be bothered with it at that particular time but would like to come back to it later.

Other Design Ideas. Participants also came up with creative design ideas. One participant, Chris,

suggested giving the editor “plasticity”. When he is given a warning and would like to get more

information, the tool should move the code surrounding the warning to embed this information

into the editor. A couple of participants thought it would be useful to have visual output, possibly

a pie-style diagram of the project and the bugs in it, instead of standard list and tree outputs to

make it easier to go back and forth between warnings and code. During Frank’s participatory design

session, he suggested a potential solution; a parts-to-a-whole corpus view of the project as a “heat

map”. The heat map would use colors to show where the errors are and how severe the problems are.

It would start with an overall “view” of the project and as you drill down you can see the condition

at each level to see where the most attention is needed. This is similar to the concept behind Khoo’s

toolkit Path Projection in that the toolkit is meant to visualize output that is usually, if not always,

textual and difficult to understand [Kho08].

An interesting suggestion made by a couple of participants was to represent the severity of the

defects using gradients of one color instead of multiple different colors; the darker the color the

more important or urgent the bug is. Figure 3.2 depicts a drawing one participant, Matt, drew during

his participatory design; he labeled the side of the editor “gradient” (A) where he would like to see

his severity representation. In the top right corner, Matt also lists the colors that his current tool

uses (B); for example, “R” means red. The idea behind this is not new; other studies have focused

their attention on using colors for error representation [ON92; MHB10b].

3.2.4 Threats to Validity

There exists threats to the validity of this study; here I categorize each threat as a threat to external,

internal, or construct validity.

External. One limitation to the generalizability of this study is the sample size. Although I

obtained valuable information from the 20 interviews, due to time constraints (and busy developers)

they may not be representative of the larger population that use static analysis tools. Although

we would have liked more participants, having a large number of interviews to transcribe and

code could lead to less accurate analysis. The study conducted by Layman et al. [Lay07], which

we discussed earlier as utilizing a similar methodology, had a participant pool of similar size (18).

Another possible threat is that we only interviewed developers who have used static analysis tools.

In some cases it may be that static analysis tools are not being used for other reasons, such as lack

32

Figure 3.2 One of our participant, Matt’s, Participatory Design drawing; (A) shows where Matt wants the
gradient colors and (B) shows the way his current tool represents severity.

of awareness. It should also be noted that some participants had experience building static analysis

tools, giving them somewhat of a biased opinion of the usage of these tools.

Internal. Another threat to the validity of this study is the way in which I conducted the remote

interviews. I did not thoroughly prepare for what I would do if the technology I wanted to use did not

work or was not available. Therefore, the interactive interview and participatory design in remote

interviews had to be conducted differently than local interviews. Despite this, there was still value

in the results obtained from the remote participants; they could still give useful insights from their

previous experiences. Only 2 of the interviews fell into this category, so this helps limit the impact of

this threat.

Construct. The objective for using the interactive interview was to get more accurate information

on how developers use their tools. One limitation here is that some developers were not as familiar

with the code or environment they had to use in the interviews as they would be with their own code

in their own development environment. This could have caused some developers to take different

actions than they would have in their own environment. Ideally it would have been better to have

been able to observe participants working in their own environment; however, for confidentiality

reasons, we could not view participants’ proprietary code. In an effort to compensate for this threat,

the open source projects and tool we chose are well-known, frequently used open source projects.

Another threat to the validity of this work is that I did not originally consider that I may have said

things in the consent form or session script that would have given unintended “hints” to participants

concerning my research expectations. One example of this is my outlining the research goals in the

33

introductions I gave prior to beginning each session. This could have led to what is called “hypothesis

guessing” where participants respond to questions based on what they think the researcher wants

to hear [Thr]. In retrospect, I helped alleviate this threat in the interviews by asking participants

experience questions.

3.3 Next Steps to A Solution

This study discovered reasons developers have for not using static analysis tools on their code.

Majority of participants noted having difficulty understanding and then coming up with a resolution

for the notifications they encounter in their tools. Based on the findings from this study, I discuss

implications for improving developer perception of their tools.

3.3.1 Notification Resolution Solutions

For many developers in the study above, it was important that their tools help them with resolving

the defects found in their code. Current static analysis tools may not give enough information

for developers to assess what to do about the warnings produced and very seldom offer a fix to

what it claims is an issue. If static analysis tools offered quick fixes, giving a potential solution and

applying it to the problem may help developers assess warnings more quickly and ultimately save

time and effort. My results indicate that FindBugs, for example, would be more useful if it had more

informative messages and offered quick fixes.

At the same time, quick fixes do not appear to be a universally applicable mechanism to help

developers resolve static analysis warnings because many static analysis warnings do not have a

small set of solutions. For example, FindBugs warns developers when two method names in the

same class differ only by capitalization; no quick fix for this problem is likely to satisfy a developer.

Also, on the negative side, quick fixes could also cause developers to be hasty in fixing their code,

which could potentially lead to more problems, such as the introduction of new defects [Muş12b].

There are also challenges related to implementing usable quick fixes. I have not yet investigated what

theses challenges are or how to address them as they are out of scope for this dissertation. I instead,

focus my attention on why developers have difficulty with interpreting tool notifications and how

we can mitigate those challenges, thereby increasing developer ability to resolve notifications.

3.3.2 Notification Understandability Solutions

According to the findings above, although the point of using tools is to help identify and resolve

defects, developers do not find the lack of quick fixes to be as much of a barrier to use as inability to

interpret the notifications provided. The tool, and any available quick fixes, become less useful if the

developer does not understand the problem as it is being communicated. Three out of four findings

34

regarding tool use pertain to the notifications tools use and how tools present information to the

developer. Discovering that tool notifications are one of the reasons developers do not use program

analysis tools is useful, however, not actionable. The next piece of information needed to make

these findings actionable is to discover why developers have difficulty interpreting tool notifications.

Only then can we start to explore ways to mitigate these barriers and potentially increase usage of

these tools. By focusing on improving developer ability to interpret tool notifications, I propose

we can also improve developer ability to resolve tool notifications. In the next chapter, I discuss a

follow-up study that explores why developer have difficulty with tool notifications.

35

CHAPTER

4

THEORY OF (MIS)COMMUNICATION

In the previous chapter, I discussed findings from a study that explored reasons developers have

for not using program analysis tools. One reason that almost all developers in that study did not

frequently use static analysis tools was due to difficulty interpreting the output provided by their

tools. Most all participants in the study could agree on is that the output provided by their tools are

sometimes difficult to interpret. Therefore, this chapter presents research that took a deep dive to

explore the challenges developers encounter when interpreting tool notifications.

To answer the question why do developers encounter challenges when interpreting program

analysis tool notifications?, I observed 26 developers with varying backgrounds while they used

three different program analysis tools: Eclipse Java compiler, FindBugs, and EclEmma. I presented

participants with and asked them to interpret notifications from each of the three tools. To identify

challenges, I examined tool use through the lens of communication theory [BT87]. Building on

an existing model of (mis)communication [Mus08], I identified 12 kinds of challenges developers

encounter when interpreting tool notifications.

Based on the challenges participants encountered when interpreting tool notifications, I pro-

posed a tool miscommunication theory that I later use to inform the design of program analysis tool

notifications. Experts in qualitative research suggest that rather than presenting a set of disparate

findings, qualitative researchers should instead produce an explanatory theory, a “skeleton or frame-

work that explains why things happen” [CS14]. While explicitly putting forward theories is rare in

software engineering [Han07], one example is Lawrance and colleagues’ theory of how programmers

36

navigate code during debugging [Law13]. In the same way that Lawrance and colleagues’ build on

information foraging theory [PC99], my theory builds on communication theory [BT87]. I summarize

my theory as:

The challenges developers encounter when interpreting program analysis tool notifi-

cations are caused by gaps and mismatches between developer knowledge and how

notifications communicate information.

In the following sections, I will discuss the methodology I used to identify developer challenges,

the 12 kinds of challenges I identified that informed this theory, and ways in which this theory can

be operationalized.

4.1 Identifying Challenges

In the study outlined in Chapter 3, I asked developers to recall experiences with static analysis tools

and briefly use FindBugs. I found that some developers do not use program analysis tools due to

difficulty interpreting the notifications tools use to communicate. To find out how tools could better

communicate with developers, this study was designed to answer the question: Why do developers

encounter challenges when interpreting program analysis tool notifications? Using Hannay and

colleagues’ guidelines [Han07], I framed my question as why rather than what to support the building

of a theory that explains the challenges developers encounter. Study materials, including the script

used during each session, can be found in Appendix B.

16 171320

P9

P10

P12P8

P6

P7

P14 P16 P17 P19 P21

P24P13

P4 P26

P20

1 7 8 9 10 15141211 18 years

P2

P1

P25P23P11

P15 P18

P22

Undergraduate Graduate Professional

3 654

P5

P3

Figure 4.1 Distribution of participants based on years of programming experience.

4.1.1 Participants

I recruited twenty-six participants using mailing lists, classroom recruitment, and personal contacts.

Participants included undergraduate students, graduate students, and professional developers, with

varying amounts of development and tool usage experience. Figure 4.1 shows the distribution of

37

(a) Source Code

Nullcheck of e at line 605 of value previously dereferenced in javax.swing.text.DefaultStyledDocument.
getParagraphElement(int)

(b) Short Description

A value is checked here to see whether it is null, but this value can’t be null because it was previously dereferenced

and if it were null a null pointer exception would have occurred at the earlier dereference. Essentially, this code and

the previous dereference disagree as to whether this value is allowed to be null. Either the check is redundant

or the previous dereference is erroneous.

(c) Full Description

Figure 4.2 A notification of a previous null check from FindBugs (FB4).

participants’ development experience, based on self-reports in a pre-study questionnaire. Increasing

participant numbers indicate increasing software development experience, and throughout this

chapter, I use parentheses to indicate participant job roles; (P) for professional, (G) for graduate,

and (U) for undergraduate. For example, the figure indicates that P24 (P) is a professional devel-

oper with fifteen years of development experience. Three graduate students (P15 (G), P18 (G), P22

(G)) reported having industry experience. Ten participants had prior experience using EclEmma.

Nineteen participants had prior experience with FindBugs. All participants had experience with the

Eclipse Java compiler.

4.1.2 Program Analysis Tools Investigated

This study focused on tools that can be used in the Eclipse Integrated Development Environment

(IDE) [Ecla]. I chose Eclipse because it is one of the most widely used IDEs [Got05], making it easier

to recruit qualified participants, and because it is compatible with a variety of tools. I selected

FindBugs, the Eclipse Java Compiler, and EclEmma as mature, popular tools.

FindBugs

FindBugs (version 2.0) notifications communicate with the developer about defects in her code

based on code patterns. Bug icons () in the gutter are colored red to indicate the “scariest” code

patterns, orange for “scary” patterns, yellow for “troubling” patterns, and blue for “of concern.” Text

descriptions are available by hovering over or clicking the icon as seen in Figure 4.2.

38

(a) Source Code

The type new AbstractInterrruptibleChannelInterruptible() must implement the inherited abstract

method new AbstractInterruptibleChannel.Interruptible.interrupt()

(b) Text Description

Figure 4.3 An Eclipse compiler notification about unimplemented methods (CMP5).

Eclipse Java Compiler

Eclipse Java compiler (JDT version 3.8) notifications communicate with developers when their

program cannot compile and provide warnings about suspicious code [Eclb]. Notifications are

typically shown as squiggly underlines in the editor. Like FindBugs, the compiler uses color to

represent severity; errors are shown as red underlines, warnings as yellow underlines. Underlines

are augmented with gutter icons (), as shown in Figure 4.3 at line 159. When the developer mouses

over the underlined code or the icon, the notification displays a text description. Unlike FindBugs,

clicking the gutter icon does not provide a detailed description. Instead, clicking the icon sometimes

provides possible fixes that can be automatically applied to the code called quick fixes.

EclEmma

EclEmma (v2.2) is a code coverage tool that executes a program, typically with JUnit as the driver [Jun],

to communicate with the developer about code paths that did and did not get exercised. Although

EclEmma communicates about one particular execution, as with the other tools it provides in-

formation to the developer regarding code (during runtime rather than compile-time). EclEmma

uses highlighting to indicate code execution; code highlighted in green was executed, red was not

executed, and yellow was partially executed. Figure 4.4 shows an example of coverage reported by

EclEmma on an if statement. When the developer mouses over the icon, the tool notifies her of

how many paths got executed on the associated branch statement at line 133 (Figure 4.4).

These tools may seem quite different, but I chose them specifically to identify challenges devel-

opers experience across tools. Despite the differences, these tools attempt to communicate similar

concepts to developers using similar textual and visual notifications. For example, both FindBugs

and EclEmma communicate information about control flow, and both FindBugs and the Eclipse

Java Compiler communicate about data flow. All three tools use color codes in a largely consistent

manner, such as using red to indicate the highest level of urgency. And as a final example, most

39

(a) Source Code with Highlighting

1 of 2 branches missed

(b) Text Description

Figure 4.4 An EclEmma notification about partial branch coverage (ECL3).

notifications communicate information about program elements, such as methods and classes, and

information about program execution, be it potential or actual.

4.1.3 Study Protocol

Each session with a participant lasted approximately one hour. Prior to each session, participants

filled out a consent form and pre-questionnaire.1 Each session consisted of seventeen tasks.

Source code for the tasks came from OpenJDK [Ope] and JFreeChart [Jfr]. I chose Open JDK

because it has a large code base from which I could easily find bugs using their publicly available

FindBugs cloud report [Fin]. I chose JFreeChart because it is a large code base with working JUnit

test cases that exhibit less-than-perfect code coverage.

For each task, I presented participants with and asked them to interpret one or more notifications

from a given tool. I disallowed the use of a web browser to isolate the challenges developers encounter

to the notifications used by the tools and to exclude challenges caused by outside tools or resources.

Allowing use of the browser would have added data that does not help answer the current research

question. I also wanted to see if developers could interpret tool notifications without the aid of

outside resources. During many tasks, and at least once for every participant, participants discussed

or completed notification resolution. I did not require them to do so as the focus of this study was

on the ability to interpret, not to resolve. As participants explained the notifications, the first author

asked follow-up questions as necessary.

Table 7.1 shows a list of the notification tasks participants encountered during each session.

A more detailed listing, with screenshots, of the notifications used in this study can be found in

Appendix B. For each task, I chose notifications to represent the types of notifications developers

may encounter when programming. For FindBugs and the Eclipse compiler, I chose notifications

that appeared frequently in the OpenJDK project. I chose EclEmma notifications from JFreeChart

to exercise a range of its coverage scenarios. Because EclEmma’s documentation did not specify

the range of notifications it uses, I manually went through JFreeChart’s codebase after running the

1This work was approved under IRB No. 2787.

40

Table 4.1 Notifications used in our study

Notification Tool Problem Category

FB1 FindBugs
String comparison
using == or !=

Pointers/References

FB2 FindBugs
Incorrect Lazy
Initialization

Multi-threading

FB3 FindBugs
Synchronize on
mutable field

Multi-threading

FB4 FindBugs Redundant null check Null/Pointers/References

FB5 FindBugs
Possible null
pointer dereference

Null/Pointers/References

CMP1 Eclipse Compiler Unused code Dead Code

CMP2 Eclipse Compiler
Unchecked Conversion,
Raw Type

Generics

CMP3 Eclipse Compiler Unimplemented methods Inheritance/Polymorphism

CMP4 Eclipse Compiler
Serializable class
needs serial ID

Serialization

CMP5 Eclipse Compiler Unimplemented methods Inheritance/Polymorphism

CMP6 Eclipse Compiler
Method not applicable
for arguments

Inheritance/Polymorphism

ECL1 EclEmma
Red class with
red class header

Class/test coverage

ECL2 EclEmma
Red class
(constructor only)

Class/test coverage

ECL3 EclEmma Simple if statement Branch/test coverage

ECL4 EclEmma
Return statement
with branches

Branch/test coverage

ECL5 EclEmma
Try/Catch/Finally
(coverage varies)

Test coverage, Exception handling

ECL6 EclEmma Nested if statements Branch/test coverage

41

(a) Source Code

- Type safety: The expression of type Vector needs unchecked conversion to conform to Vector<String>.

- Vector is a raw type. References to generic type Vector<E> should be parameterized.

(b) Text Description

Figure 4.5 A notification from the compiler about generics (CMP2).

tool and took note of each new coverage scenario encountered. I then included an example of every

coverage scenario in the EclEmma tasks.

For FindBugs, each task during the session corresponded to a single notification. All but one com-

piler task corresponded to a single notification; because the two notifications on CMP2 (Figure 4.5)

contribute to the same problem on the same line, I presented them as one task. Each EclEmma task

consisted of participants explaining coverage notifications for the entire class.

4.1.4 Data Collection

I recorded audio and the screen in each session for analysis. I then created transcripts from the audio,

and included descriptions of actions that a participant performed that were relevant to interpreting

the notification. For example, if a participant navigated to different parts of the code but did not

explicitly describe it, I added a description of that navigation to the transcript.

4.1.5 Data Analysis

I analyzed each session using open and selective coding [CS14] to discover participant challenges. To

identify a challenge, I needed concrete criteria. I proposed that tool use is a form of communication,

and therefore that challenges when interpreting a notification can be seen as ineffective communi-

cation. Existing research on how computers should talk to people suggests that if an explanation is

required for a message to be understood, the message was not effective [Dea82].

I used this logic to determine when a challenge occurred, using three criteria for inclusion:

1. The participant explicitly stated a challenge.

2. The participant was unable to explain the notification.

3. The participant had to take steps, outside of reading the notification, to deduce the problem.

42

Whether an observation met a criterion is independent of whether the participant was able to

explain the notification.

I and a collaborator individually used open coding on each transcript, labeling portions that

mapped to a challenge. We then reconvened to merge our codes. The criteria above guided this

process; if we could not agree that a code fit our criteria, we removed it from our data set. Of the

404 codes we originally extracted, we disagreed on 82 (20%) from twenty-six sessions. To resolve

our disagreements, we referred to our criteria; if we could not come to an agreement regarding the

code fitting the criteria, we removed the statement from our data set. For four sessions, we had no

disagreement. In the end, we identified 322 codes. We put each code onto a note card, along with

the participant and tool being used.

Next, I used a card sorting methodology similar to that of Muşlu and colleagues [Muş14]. The

goal of this card sort was to identify themes based on the identified codes. I used five of the eight

authors on the publication of this work and completed the card sort in three phases. In phase 1, we

sorted all cards into high-level themes; each card could only go in one theme. Phase 2 focused on

determining where high-level themes could be broken down into lower-level themes. In phase 3,

we focused on making sure that each card was in the best fitting theme. During this phase, we also

clarified theme definitions and made note of example statements to represent each theme.

Because one of the criteria is participant inability to explain a notification, any actions or

statements made surrounding that occurrence was included in the card sort. Upon reflection,

some emergent themes took the form of consequences rather than challenges, such as notification

resolution without understanding and lack of trust in the tool, therefore I will not discuss them in

this chapter. I likewise will not discuss the emergent theme of tool feature requests. These excluded

themes are available with the other on-line research materials.

4.1.6 Study Credibility & Findings Validation

There are inherent threats to the validity of empirical research [OL07]. Despite these inherent threats,

prior research suggests there are ways we can increase confidence in the credibility and validity

of empirical findings [Gas04; Li04]. Following the safeguards for conducting empirical research

proposed by Li [Li04], I ensured the following in the collection, interpretation, and reporting of the

data I collected:

• Voluntary participation and anonymity. To receive truthful responses from participants, I

provided participants up-front with information regarding the purpose of the study, what will

happen with the data, and how anonymity will be ensured.

• Purposeful sampling. To sample with the purpose of gathering diverse participants and to

increase the ability to generalize findings, I recruited participants from academia and industry

with varying levels of programming experience.

43

• Triangulation. To increase reliability, I triangulated data from direct observation and think

aloud.

• Prolonged engagement. To allow participants time to get acclimated to a researcher being

present while not getting too fatigued to contribute data, each session lasted about one hour.

To increase the effectiveness of this safeguard, the researcher interrupted as little as possible.

• (Near-) Natural situation. To increase ecological validity, I set up the study environment and

recruited participants familiar with that environment and programming language. I also

allowed participants to explore the code as they would if it were their own.

• Peer debriefing, stepwise replication, and interrater reliability. To ensure researcher agreement

about the findings, two authors separately analyzed the transcripts for statements of interest.

I also included multiple researchers throughout the multi-step analysis and reporting process.

• Member checks. To ensure validity of the data and our interpretation, I reached out to all

participants, providing them with a summary of the findings, a copy of the written report, and

a form for providing feedback on the findings.

• Thick description. To enable judgment of how my research fits with other contexts, we describe

in detail the methods used to collect the data and the setting in which it was collected.

Other safeguards include Training for subjects, Background checks, and Refrain from generalizing.

I did not conduct training for think aloud, as it could have affected my ability to recruit participants.

I used criteria for participation as a background check and do not generalize outside the context of

software developers.

4.2 Knowledge-Related Challenges

Remember Valerie from Chapter 1? Though she is a hypothetical developer, the challenges she faced

are not hypothetical. Valerie experienced challenges caused by both knowledge gaps (no knowledge

regarding lazy initialization) and knowledge mismatches (expecting an explicit connection to syn-

chronization). Because research suggests experience matters when understanding vulnerabilities,

and that experiences affect knowledge, I speak about knowledge here and throughout this thesis as

the culmination of experiences [JL89; AMS11; Bac09]. Using that definition, a knowledge gap occurs

when there is a gap between what the developer knows, based on her experiences, and how the tool

communicates; a knowledge mismatch occurs when what the developer knows and expects from

the tool, based on her experiences, does not match the notification the tool uses.

The challenges that comprise my theory are shown in Figure 4.6. Vertical lines represent the tasks

and the horizontal bars indicate challenges. The area of the dots indicate how many participants

44

FB1 FB2 FB3 FB4 FB5 CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 ECL1 ECL2 ECL3 ECL4 ECL5 ECL6

General
Problem
Description
Mismatches

Problem
Resolution
Gaps

General
Knowledge
Gaps

Conceptual
Knowledge
Gaps

Visual
Communication
Mismatches

Consistent
Communication
Mismatches

Problem
Importance
Gaps

Familiar
Communication
Mismatches

Information
Salience
Mismatches

Notification
Experience
Gaps

FindBugs Eclipse Java Compiler EclEmma

Knowledge
Mismatches

Knowledge
Gaps

P1 P11 P12 P13 P14 P15 P16 P17 P18 P19P2 P21 P23 P24 P26P3 P5 P8 P9

P1 P17 P18 P20 P24 P26P3 P5 P6

P1 P11 P13 P14 P17 P18 P19 P20 P21 P23 P24 P25 P26P3 P4 P9

P1 P14 P23 P24P3 P5

P1 P11 P12 P13 P14 P15 P16 P17 P18 P19P2 P21 P22 P23 P24 P25 P26P4 P5 P6 P8 P9

P1 P11 P14 P16 P17P2 P22 P24 P25P3 P5 P6

P11 P12 P13 P15 P18 P19 P21 P23 P26P3 P4 P5 P8

P12 P13 P14 P17 P18 P19 P21 P23 P24 P25 P26

P13 P21 P26

P13 P21 P26

FB1 FB2 FB3 FB4 FB5 CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 ECL1 ECL2 ECL3 ECL4 ECL5 ECL6

General
Problem
Description
Mismatches

Problem
Resolution
Gaps

General
Knowledge
Gaps

Conceptual
Knowledge
Gaps

Visual
Communication
Mismatches

Consistent
Communication
Mismatches

Problem
Importance
Gaps

Familiar
Communication
Mismatches

Information
Salience
Mismatches

Notification
Experience
Gaps

FindBugs Eclipse Java Compiler EclEmma

Knowledge
Mismatches

Knowledge
Gaps

Hide/Display Details

Figure 4.6 Distribution of challenges encountered and notifications that caused them.

encountered challenges with that notification in that theme. Diagonal lines map participants to the

challenges interpreting that notification. The “Hide/Display Details” button interactively toggles

between showing and hiding this mapping. I describe each challenge type, and validation of the

findings, in detail in the remainder of this section.

4.2.1 Knowledge Gaps

Knowledge gaps occurred when there was a gap between what participants know and the informa-

tion provided by the notification. Knowledge gap challenges occurred when participants did not

have existing knowledge of software development activities relevant to a given notification. However,

we found it is not as simple as “beginners battle and experts excel”, but instead that challenges faced

by developers can occur regardless of programming or industry experience. In this subsection, I

45

will describe general knowledge gap challenges, followed by four specific kinds of knowledge gaps

identified in this study.

4.2.1.1 General Knowledge Gaps

General knowledge gap challenges occurred when there was a gap between the general software

development knowledge participants had relevant to the notification and the information provided

by the notification. When participants did not provide enough information to map a challenge to a

more specific kind of knowledge gap, I placed that challenge in this theme. Participants experienced

knowledge gap challenges across all three tools (Figure 4.6).

FindBugs was more dominant in this theme than the compiler, with 9 and 2 participants encoun-

tering challenges respectively. This was the case, despite the compiler using less text than FindBugs

to communicate. Participants focused on the text to understand the problem, but struggled to un-

derstand what the tool was trying to convey. Despite FindBugs’ verbosity, as stated by 4 participants,

the tool provided just enough to need to use the web to figure out the problem. For example, P25 (P)

struggled to interpret FB3. He made an effort to understand the notification, but then realized the

notification did not provide enough for him to feel confident in his explanation, stating:

I would definitely want to correct it but I don’t get enough info from here to know what to

correct or what I did wrong so I would probably take this message and go to Google to see

if anybody else is talking or saying something that I understand better.

Participants who struggled with compiler and EclEmma notifications found themselves in a situation

similar to P17 (G) when interpreting CMP4 and notifications in ECL1. When he encountered CMP4

and ECL1, he immediately realized the notifications did not provide enough information for him

to come to a conclusion about each. He noted, like P25 (P), that he would need to use Google or

documentation to better understand the notification being provided. P17 (G) was unable to come

to a conclusion regarding either notification.

These findings confirm that more is not always better [Nie08] for closing knowledge gaps and that

these gaps exist with visual communication as well. Along with general knowledge gap challenges,

participants experienced challenges caused by four specific types of knowledge gaps that emerged:

conceptual knowledge gaps, notification experience gaps, problem importance gaps, and problem

resolution gaps.

4.2.1.2 Conceptual Knowledge Gaps

Conceptual knowledge gaps occurred when there was a gap between participants’ knowledge of

programming concepts, like serialization, present in the notification and the information provided

by the notification regarding those concepts. P24 (P), a professional developer with 15 years of

46

experience, attempted to work through CMP4 despite his unfamiliarity with serialization. His guess,

based on the notification, was that he was missing a serialversionUID; however, beyond that he

was unsure how a serialversionUID is associated with serialization. This led to the inability for

P24 (P) to fully interpret the notification.

P5 (U) encountered challenges interpreting FB2 due to conceptual knowledge gaps regarding

multi-threading. The notification spoke about concepts such as lazy initialization, which P5 (U)

noted he had not had past experience with. Therefore, he could only guess what was wrong with the

code.

Conceptual knowledge can also affect visual communication, even when the relevant concepts

are not depicted in the notification. Test coverage is the obvious concept necessary to understand

test coverage notifications. Some of the notifications participants encountered from EclEmma

required knowledge of other concepts, such as exception handling. Three participants noted they

could not confidently explain EclEmma notifications involving finally blocks using the visuals

provided due to their minimal experience with finally blocks.

After completing ECL5, most participants could at least vaguely explain the notifications they

encountered. However, P5 (U) still could not definitively conclude anything about the notifications,

stating:

I don’t know what finally means but it seems like everything inside try is not getting

called. . . I assume finally is similar to catch but I don’t really know how finally
works.

His lack of knowledge regarding finally blocks made it challenging for P5 (U), despite his familiar-

ity with other relevant code structures.2 This, coupled with being his first experience with EclEmma

notifications, led to his inability to interpret the notifications in ECL5.

4.2.1.3 Notification Experience Gaps

Notification experience gaps occurred when there was a gap between participants’ knowledge gained

from experience with a notification they encountered for the first time and the notifications they have

previously encountered. Participants’ lack of experience with a notification is the knowledge gap

that caused challenges in this theme. For example, P21 (G) struggled to interpret the notifications in

ECL2 due to the differences in highlighting on uncovered methods and constructors. His comments

suggested that he understood the concept of coverage, but stated that the challenge was due to

unfamiliarity with the tool. When he first encountered an uncovered method notification, without

2The reader may also find this confusing, but this was a design decision made by EclEmma’s toolsmiths. This confusion
arises from a difference between the bytecode representation and the source code representation of finally blocks
(https://github.com/jacoco/jacoco/issues/15). Although this may seem like a design problem, we included
the notifications we did, including ECL5, because they are encountered in the wild.

47

https://github.com/jacoco/jacoco/issues/15

the signature highlighted like a constructor’s signature was, he could not determine whether lack of

highlighting was equivalent to red highlighting. The challenges in this theme are general in that

they relate to overall notification knowledge. Some of the challenges that emerged relate to gaps in

knowledge regarding notification specifics, such as importance and resolution.

4.2.1.4 Problem Importance Gaps

Problem importance gap challenges occurred when there was a gap between participant knowledge

of the importance of the problem and the notification’s attempt to communicate importance. As

P18 (G) attempted to explain FB3, he realized that although the notification did tell him that he

was synchronizing on a mutable field, it did not tell him why that is undesirable. He attempted

to determine a reason for why it is undesirable, and though he found the notification’s message

“unlikely to have useful semantics” helpful, he noted that his reasoning “would not be correct”

because he would have to guess.

Without an understanding of why the problem was bad, participants could not confidently

interpret the notification; this led to challenges coming up with resolutions. For example, P5 (U)

could not confidently resolve CMP4; the notification was clear that a missing serialversionUID is

the problem, but did not specify why the ID was needed. Though the compiler provided quick fixes,

deciding which fix was best for P5 (U) depended on what the ID was used for, which the notification

did not specify.

4.2.1.5 Problem Resolution Gaps

Problem resolution gap challenges occurred when there was a gap between what the participant

knows about resolving a notification and the resolution suggested by the notification. Most often

this gap was present because the notification did not include information specific to notification

resolution. When participants did not know how to fix a notification, they had to guess how they

might fix it or, as P20 (P) noted, “Google it to make sure” they fully understood the notification and

how to fix it. The downside to this approach is that it takes developers into a form of information

foraging that involves leaving their working context [AT04], which P13 (P) explicitly stated:

Anything that deviates my train of thought from the task at hand. . . that’s the last thing

you want when writing code.

The notifications that did provide a fix description did not provide a clear description of the fix or how

to apply it; without the required knowledge, filling this gap was difficult for participants. This was

most often the case with the compiler, which provides quick fixes with minimal explanation attached.

Two participants struggled with understanding and resolving CMP4. Both appeared confident that

48

something was missing and that they should add the serialversionUID. However, neither knew

what a serialversionUID was or how they should have used it.

Sometimes notifications provided multiple options for resolution but did not provide infor-

mation regarding which resolution was most appropriate. This left participants with the task of

determining the best fix to apply. For example, CMP4 offers multiple fix possibilities, each with its

own set of code changes and possible side effects. P26 (P) spent time sorting through and discussing

the options for fixing CMP4. Because the tool did not provide information regarding the pros and

cons of a each fix, he was unable to explain how to resolve the notification.

4.2.2 Knowledge Mismatches

Knowledge mismatch challenges occurred when there was a mismatch between how participants

expected a notification to communicate, based on their knowledge, and how the notification commu-

nicated. Unlike knowledge gap challenges, participants had knowledge relevant to the notifications

and concepts. However, they encountered challenges when attempting to use their knowledge to

interpret the notification. As with knowledge gaps, I describe general mismatch challenges, followed

by discussion of four specific kinds of knowledge mismatches identified in this study.

4.2.2.1 General Problem Description Mismatches

General problem description mismatches occurred when there was a mismatch between the way the

participant would textually describe the problem and the description provided by the notification.

Although other challenges relate to notification text, for General Problem Description Mismatch

challenges, it was unclear what about the description participants found confusing. However, it

was clear that the text was not communicating in a way that participants could use their knowledge

to reconcile. This is related to research on compiler messages conducted by Traver that suggest

unambiguity of language is important [Tra10]. Similarly, O’Neil discussed the importance of language

considerations in data breach notifications [O’N15].

Representative of textual communication mismatch challenges was P16’s (G) experience inter-

preting FB5. After he read the text provided by the notification, P16 (G) was unable to come to a

definite conclusion regarding the problem, stating:

It didn’t confirm or deny what I thought because the wording of the [tool tip] was not

quite how I would have described it. . .

Participants encountered similar challenges with the compiler. P17 (G), for example, went back and

forth between the text of CMP3 and information provided via quick fixes as he tried to understand

the problem. He was able to guess, based on his knowledge, what the problem might be but moved

49

away from the text of the notification to come to any sort of conclusion about the problem being

communicated.

For some participants, the language notifications used was familiar but not something they could

quickly recollect. P3 (U), for example, saw the word “mutable” in FB3 and he could not remember

what mutable meant. After P5 (U) read the text provided for FB3, he explained that the use of the

phrase “useful semantics” may not have been the best choice as, for him, terms like this “have

different meanings in computer science and the real world.”

Similarly, P5 (U) and P24 (P) struggled due to ambiguity in the language used. P5 (U) found

the overall phrasing of CMP6 “weird.” P24 (P) was more specific in stating how the language was

ambiguous. He found the use of the word “applicable” to be odd in this context and not clearly

indicative of the message he assumed the tool was trying to communicate.

Although these textual mismatch challenges encountered are general, specific types of mis-

matches with the text portion of the notification emerged: information salience mismatches, visual

communication mismatches, consistent communication mismatches, and familiar communication

mismatches.

4.2.2.2 Information Salience Mismatches

Information salience mismatches occurred when there was a mismatch between the information

a participant thought was most relevant and the information the notification made salient. This

aligns with McCrickard and Chewar’s suggestion that general computer users are dissatisfied with

notification systems because of mismatched information prioritization [MC03].

Representative of these challenges was P13’s (P) attempt to interpret FB2, P13 (P) read the tooltip

for FB2 but did not find anything useful; he saw “update of static field” but was not certain what the

tool was trying to communicate. After digging deeper, he found that the tool eventually elaborated

on what is wrong with where and how a field is set when working with threads. This was what he

was looking for, as it helped him understand why it was a “very serious multi-threading bug,” as the

notification stated. For him, and the other participants who encountered challenges in this theme,

the most easily available information was not so useful, leaving them unsure of what the problem

was in the code and why it was a problem. The critical pieces of information, such as that it is a

multi-threading problem concerning where synchronization is placed, got buried.

I only observed this phenomena with more experienced developers; this suggests that more

experienced developers may have more concrete expectations of what information tools should

provide. On the flip side, less experienced developers may not know when important information is

buried because they are unsure of what the important information is. Therefore, less experienced

developers did not appear to encounter challenges in this theme.

50

Figure 4.7 A notification from EclEmma regarding finally coverage (ECL5).

4.2.2.3 Visual Communication Mismatches

Visual communication mismatches occurred when there was a mismatch between how the partici-

pant would communicate with other developers about the notifications and the visual elements used

by the notifications. For these challenges, it was clear there was a mismatch between what partici-

pants expected and what the tool presented them with, but there was no indication by participants

of what specifically caused the mismatch.

For fourteen participants, EclEmma’s attempts to communicatefinallyblock coverage in ECL5

(Figure 4.7) failed because it was not obvious, based on their mental model of how finally blocks

work, how a finally block can be missed or the code inside a finally block could be partially

covered. For example, P24 (P) had expectations regarding how EclEmma might communicate

coverage of a finally based on prior experience with the construct that suggests it always executes.

Rather than exploring more, P24 (P) noted he did not understand the way the tool communicated.

Seven participants had expectations regarding how try blocks work that did not match how

EclEmma reported try block coverage (ECL5). For example, as P23 (G) sorted through the notifica-

tions in ECL5, he wanted to know which line failed to cause the try block to not execute. Attempting

to interpret the notification, he stated:

In order for the catch statement to be activated I would imagine that this code had at

least been evaluated.

His expectation, based on his knowledge of the code construct, was that if the try did not execute,

there was a line of code at fault. However, contrary to his expectations, EclEmma highlights the

entire try block red if an exception is thrown, which makes it unclear whether the try executed at

all, and if it did, where an exception was thrown.

Five participants got confused by EclEmma’s lack of textual information. Participants probably

noticed this because both FindBugs and the compiler provide supplemental textual information

when markers, similar to the ones provided by EclEmma, are clicked; in fact, markers and notifica-

tions from other tools within EclEmma’s interface sometimes distracted participants looking for

information regarding code coverage. As P4 (P) accessed the information provided by notifications

in ECL6, he noticed and explored the availability of multiple markers that provided information.

Some of these markers came from other tools; none provided P4 (P) with “any details about the

coverage part,” so he was not sure why they were present.

51

4.2.2.4 Consistent Communication Mismatches

Consistent communication mismatches occurred when there was a mismatch between the consis-

tency expected by the participant and the inconsistencies in how the notifications communicated

similar problems. Prior research suggests that within-tool-consistency is an important factor for

developers when interpreting and addressing compiler messages [Tra10]. The results in this category

suggest that experiences affect perception of consistency and that this phenomena generalizes to

visually-enriched notifications in other types of tools.

Five participants encountered challenges caused by inconsistencies in how EclEmma reports

coverage on branching structures. Under the assumption that yellow highlighting was accompanied

by a textual description (i.e. 1 of 2 branches missed), participants often struggled to interpret

notifications like the one in Figure 4.7. P6 (U), among others, spent a significant amount of time

during her session trying to interpret the notifications in ECL5. When she realized that there were

no markers available to better explain partial coverage inside a finally block, she began looking

at the other similar notifications in ECL5. When she realized that none of the other notifications

had what she was looking for, she summarized why she was struggling, stating “I’m not sure what

the other option could be. . . it doesn’t have the little yellow diamond on it.”

Six participants noticed inconsistencies in how EclEmma reported coverage on non-branching

code structures. Five of the six encountered challenges interpreting notifications on methods and

constructors. EclEmma highlights the constructor signatures to indicate a missed constructor,

however, does not highlight a method signature when it is not executed. For example, during P14’s

(P) session, he did a lot of back and forth between EclEmma tasks to compare notifications. As he

tried to interpret the notifications in ECL3, he reflected on and revisited ECL1 and ECL2, where he

recalled there being class, method, and constructor coverage. He remembered the inconsistencies

with how ECL1 and ECL2 communicated coverage on these constructs and found it to be confusing.

Therefore, he could not give a definite interpretation of any of the three.

4.2.2.5 Familiar Communication Mismatches

Familiar communication mismatches occurred when there was a mismatch between participant

familiarity with the methods a notification uses to communicate about programming concepts and

the methods the notification used to communicate about programming concepts When participants

encountered these challenges, they often noted lack of familiarity or the inability to easily recognize

the problem. Participants that noticed unintuitive communication techniques found some for all

tools. The majority of participants (five of eleven) stated that EclEmma’s dominant use of color to

communicate code coverage was not intuitive. For example, participants did find it intuitive to use

yellow for partial coverage in notifications like the ones in ECL3, ECL5, and ECL6. The common

problem with the other tools involved association of the notification to the root cause and unintuitive

52

fix descriptions.

4.2.3 Member Check

To assess the validity of how I interpreted the data, and the experiences developers have when

interpreting tool notifications, we conducted a member check. Of the seven responses received, two

developers agreed with these findings and five strongly agreed. Many found the report “interesting,”

some noting that although they may not have experienced all of the challenges during the study, they

can recall previously encountering such challenges. When asked which challenges they can relate

to the most in their experiences with tools, the most common choice was Problem Resolution Gaps

(5). The second most common responses (4) include Notification Experience Gaps and Information

Salience Mismatches, followed by the third most common responses (3) of Conceptual Knowledge

Gaps, Visual Communication Mismatches, and Familiar Communication Mismatches.

4.3 From Theory to Practice

Current tools do not support developer knowledge gaps (Section 4.2.1) and sometimes conflicts

with existing developer knowledge (Section 4.2.2). In this section, I discuss several implications of

the findings from this study.

4.3.1 Filling Developer Knowledge Gaps

Despite the experience of some participants, every participant encountered at least one notifica-

tion they did not understand. FindBugs, the Eclipse Java Compiler, and EclEmma attempt to fill

knowledge gaps to different degrees and in different ways. FindBugs sometimes provides definitions,

examples, and fix suggestions. The compiler provides tooltip descriptions and often an automatic

quick fix that developers can apply to learn about notification resolution. EclEmma sometimes

provides tooltips to help developers fill knowledge gaps concerning low test coverage.

One straightforward solution is for tools to provide more information to developers to help fill

knowledge gaps. For example, for developers that struggled with finally block coverage in ECL5,

it may have been helpful if the tool provided information regarding finally block coverage in

EclEmma. Or, for developers who did not know what synchronization is, it may have been helpful to

provide a definition or code example of what it means to correctly synchronize an object or method.

Findings from this study suggest tools can fill developer knowledge gaps by consistently providing

information about the options for fixing a notification (Section 4.2.1.5) and reasoning for resolution

(Section 4.2.1.4). The Eclipse compiler makes a consistent effort to provide fix information, however,

it does not make an explicit effort to assist developers with deciding the best fix their code nor

does it provide rationale for resolution. Muşlu and colleagues provided one potential solution for

53

compiler notifications with QUICK FIX SCOUT [Muş12b]. Although this approach could be applied

to other tools that offer quick fixes, like FindBugs, QUICK FIX SCOUT prioritizes and rationalizes

based on one criteria: the number of new notifications introduced by applying the fix. However,

other criteria, such as whether the fix uses familiar APIs, may also improve the usability of program

analysis notifications.

4.3.2 Matching Developer Expectations

Developer expectations can have an effect on their ability to interpret notification messages (Sec-

tion 4.2.2). I propose that tools can improve how they communicate to developers if they are able

to ascertain developers’ knowledge and experiences, which inform their expectations [Dea82]. For

each notification in this study, some developers could interpret the notification and others could

not. Therefore, it may be that providing every developer with more information is not the best way

to support developers’ understanding of tool notifications.

If a tool could know its user’s familiarity, or unfamiliarity, with the notifications it provides,

or the concepts in those notifications, the tool could determine how to adapt its notifications to

better fit the user’s expectations. However, tools cannot acquire the knowledge required to build

these constructs on their own. One potential solution, modeled after intelligent tutoring systems

(ITS) [Mur99b], which I explore later in Chapters 5 and 6, is for tools to use developer knowledge,

in the form of their experiences, as a factor when determining the information necessary for a

developer to interpret a given notification.

Imagine two developers, D1 and D2; D1 frequently develops in multi-threaded environments

while another, D2, is new to multi-threading. For multi-threading experts, like D1, extra information

regarding terms and fundamental concepts, such as lazy initialization, may not be necessary. It

may be enough to notify her and provide quick access to a suggestion or example for resolving the

problem; it may even be distracting having other information available she likely does not need. For

multi-threading novices, like D2, all the information provided could be of use; such novices may

need even more information.

ITS create student models based on assessments; we imagine IDEs could construct a model of a

developer’s experience by observing their use of language features, tools, and libraries in the code

they write. This is similar to the design of other kinds of notifications [MC03; Sow05; Zha05a] and

aligns with research on recommendation systems that suggests data mining and other knowledge

inference techniques can help provide previously-unknown information for task completion [Rob14].

There may be factors other than their coding experience to consider for accurate models. Other

data we can collect include notifications the developer has resolved or portions of the notification

text frequently visited or used by the developer.

In order to adapt tool notifications to a given developer’s knowledge, there needs to be some

54

notion of how much the developer knows about the concepts in the notification. For the remainder

of this document, I use concept to mean programming concepts. I chose to focus on program-

ming concepts because the findings from this study, and existing research conducted by Smith and

colleagues, suggests understanding programming concepts affects developers’ ability to under-

stand and resolve notifications [Smi15]. Borrowing from education research and using developer

experiences as a concrete representation of knowledge, the remainder of this thesis evaluates the

possibility to ascertain and approximately predict developer knowledge of programming concepts.

55

CHAPTER

5

ASSESSING DEVELOPER KNOWLEDGE

In the previous chapters, I proposed that communication between notifications and developers

could be improved if the information provided by notifications could adapt to the developer based

on the developer’s knowledge. For it to be possible to adapt the information provided by notifications,

tools need a way of knowing what concepts the developer knows and does not know. Furthermore,

tools also need a way of knowing how well developers know these concepts.

Research in adaptive user interfaces prove models that represent some aspect or characteristic of

the user, that tools then use to adapt their interface accordingly [Mur99a; Sch96]. The theory posed

in Chapter 4 suggests that developer knowledge can affect their ability to effectively use program

analysis tools. Therefore, it could be beneficial for tools to have access to models that can predict

developer knowledge based on their activity.

In order to make tools aware of developer knowledge, I need a ground-truth way of representing

developer knowledge that can be eventually be used as a dependent measure of knowledge in

a predictive model. Borrowing from existing computer science education research, I developed

concept inventories for knowledge assessment.

A concept inventory, or CI for short, is a validated assessment that uses multiple-choice ques-

tions to aid instructors in assessing student understanding of relevant domain or course concepts,

while also identifying student misconceptions [Eva03]. Concept inventories can cover any range of

concepts and originated in the field of physics with the Force Concept Inventory [Hes92]. There are

guidelines for creating concept inventories, such as avoiding catch-all options like “All of the above”

56

and using empirical methods to validate and improve inventory questions and items. Most often in

the natural sciences and engineering, inventories assess breadth of knowledge across the subject or

course of interest [Eva03]. In Computer Science, for example, a range of introductory programming

concepts can be represented in a given concept inventory [TG10].

Borrowing from concept inventories used in other STEM fields, CS Education researchers and

instructors have developed various concept inventories for assessing students’ knowledge of in-

troductory Computer Science concepts [Alm06; Kro10; Tew10]. Almstrum and colleagues created

concept inventories to assess student knowledge of concepts taught in a discrete mathematics

course [Alm06]. Tew and Guzdial developed a concept inventory for assessing students’ knowledge

of introductory concepts in introductory Computer Science courses [Tew10; TG10]. These invento-

ries used textbooks and experts to create test specifications that they then validated using empirical

methods, such have CS Education experts review the specification. Fundamental concepts included

on their concept inventory include object-oriented programming and control structures. Similar to

other Computer Science concept inventories, Tew and Guzdial’s introductory concept inventory

assess breadth of knowledge.

Similar to the concept inventories developed by Tew and Guzdial, Zingaro and colleagues

developed ConcepTests [Zin10] used in to monitor and assess student understanding of computer

science concepts as they were taught. Similar to my concept inventories, these ConcepTests focus

on one specific concept at a time except with the goal of encouraging and implementing peer

instruction (PI). In contrast, Zingaro and colleagues do not use the validated steps for creating a

concept inventory to create their assessments.

Also closely related to my approach and the goal of my inventories is the work of Karpierz and

Wolfman, who designed a variety of multiple choice questions for concept inventories on binary

search trees and hash tables [KW14]. Rather than focusing on various Computer Science concepts at

once, they focus on developing questions to assess specifically binary search trees and hash tables.

Contrary to our approach, they only deployed their concept inventory once – during the last lecture

of the course. This eliminates the possibility of comparing how much students knew before taking

the course and how much they know now, which I assess with my concept inventories.

Although these concept inventories have been proven useful in various contexts, some in-

structors believe, and research suggests, we should be moving away from textbook-driven lessons

and assessments, and employ more focused efforts to monitor student learning and understand-

ing [Pel01; GM05; WR99]. This work builds on existing work by adapting current methods used to

develop concept inventories by 1) assessing depth of knowledge regarding a single programming

concept, 2) using language specification, tutorials, and other technical documents to create the

content of the concept inventories, and 3)incorporating practical software engineering concepts,

such as tool use.

57

5.1 Modified Concept Inventories

Traditionally, concept inventories are used to assess programming knowledge across concepts;

in Computer Science, the target audience is typically introductory programming students [TG10;

Kac10]. For the remainder of this document, I will refer to knowledge of programming concepts

as conceptual knowledge. In order to be able to evaluate a range of expertise with the concept

inventories, I evaluated the potential for a depth versus breadth approach to assessing conceptual

knowledge, that incorporates software engineering concepts and practices, with the target audience

being developers at any stage of expertise. Therefore, I could not borrow directly from research that

uses a breadth approach to create concept inventories that assess high level knowledge of concepts

taught in an introductory course [Tew10]. I extended existing concept inventory research [TG10;

NEL67] by using the new Bloom’s Taxonomy to create questions [Sco03; Tho08; Sta08], subjective

resources like language specifications to determine sub-concepts relevant to a single concept,

and tool output, including compilation errors and warnings, to integrate practical applications

of the programming concepts. The differences between my approach and existing approaches

is highlighted in Table 5.1. The final process I have developed for creating general knowledge

programming concept inventories that assess depth of knowledge is as follows:

1. Define Conceptual Content for Test Specification

2. Build Bank of Test Questions

3. Pilot Questions

4. Establish Validity and Reliability

Table 5.1 Summary of the differences between my approach and existing approaches.

Existing CS Concept Inventories My Concept Inventories

Defining Concept
Content for
Test Specification

Textbooks; provide definitions to
CSEd experts for review

Language specifications, language
tutorials, and documentation

Build Bank of
Test Questions

Three types of questions
(Definitional, Tracing, Code Completion)

Six types of questions (Bloom’s
Taxonomy), tool output, compilation

Pilot Questions Collect data for later analysis
Iteratively conduct think aloud
and modify

Establish Validity
& Reliability

Empirical analysis of responses Item and distractor analysis

58

5.2 Defining Conceptual Content

A test specification is a way of formally outlining what will be on the test without having to write

any of the questions [TG10]. Once I decided on the programming language and concept(s) of

interest, rather than using expert review to determine appropriate sub-concepts concepts, use a

more objective, practical approach. This is achieved by using language specifications, tutorials, and

other documentation surrounding that concept. This is an iterative process meant to increase the

depth of assessment on the concept and related sub-concepts.

To determine the conceptual content for each concept inventory, I identified key concepts from

the most up to date the Java Language Specification (JLS) [Gos96] and the Oracle Java Concept

Tutorials on the concept of interest.1 The Oracle Java Tutorial was most useful for finding and

mapping the relationships between concepts and ancestor concepts; if Lesson X built on top of

Lesson Y, we consider Lesson Y an ancestor of Lesson X. For example, based on the generics tutorial,

we labeled Upper Bounded Wildcards as an ancestor concept to Wildcards.

Figure 5.1 Question assessing ability to evaluate generic type instantiation.

Once I had a list of concepts and sub-concepts, I created questions to assess the various con-

cepts, mapping each question to at least one level of Bloom’s Taxonomy. I used examples found in

the language specifications and tutorials, along with relevant tool output, to create questions for

each inventory. For example, the item shown in Figure 5.1 is a question on the generics concept

inventory that asks a question to determine the student’s ability to evaluate a problem pertaining to

instantiating a generic type (Bucket). According to the new Bloom’s Taxonomy, evaluation includes

Checking and Critiquing, which involves students making decisions based on criteria. In terms of

Computer Science, prior works suggests this can be done by, for example, assessing students’ ability

to determine if a piece of code satisfies requirements (i.e. compilation) or critiquing the quality of

the code based on known standards [Tho08].

1http://docs.oracle.com/javase/tutorial/java/generics/

59

http://docs.oracle.com/javase/tutorial/java/generics/

5.3 Building A Bank of Questions

Based on existing concept inventory research, the questions on concept inventories should be

multiple choice and all questions should have the same number of items to choose from [TG10];

typically there are 4–5 items. Existing work also recommends avoiding catch-all items such as “All

of the above” and “None of the above” [TG10]. While one of the items should be the best right

answer, other options, known as distractors, should be plausible permutations that are believable

but incorrect.

Next, using the revised Bloom’s Taxonomy, which is the most up to date version of the taxonomy,

is to derive a bank of test questions. Using Bloom’s Taxonomy increases assurance that the questions

assess different levels of understanding, which helps assess mastery of a concept [Sco03; Tho08].

Each question should map to at least one level of Bloom’s Taxonomy [Sta08; KH08]; rigor increases

at each level. I found it helpful to compare the kinds of questions asked at each level of Bloom’s

Taxonomy with the questions in the bank to be used. I believe it is more effective if each level of

Bloom’s Taxonomy is represented in the bank of questions at least once rather than only focusing

on certain levels of the Taxonomy [Sco03]. To further incorporate practical aspects of software

engineering, for each inventory, create questions that ask about code compilation, writing quality

code, and resolving tool output.

5.4 Think Aloud Pilots

Once there is a bank of questions, the next step is to pilot the questions. The goal of this pilot is to

determine if there are any obvious ambiguities in the questions or options. Consistent with Parker

and colleagues [Par16], we recommend a think-aloud activity where students take each concept

inventory and report questions or items that stand out as confusing and why. As participants note

ambiguous words or phrases used in the questions or items, immediately make modifications

before having any others pilot the inventory. When observing the scores, if all the scores are really

high, or really low, this might suggest an assessment that is too difficult or too easy [NEL67], which

would require revisiting and revising the questions or items. To ensure items contribute to overall

effectiveness, use statistical methods to validate the concept inventories.

I piloted my concept inventories with undergraduate and graduate students. For each student, I

asked them to take the inventory as they normally would and let us know when one of the following

occurs:

• They came across a question where the phrasing did not make sense or was unclear.

• The came across an option for a question that did not make sense or was unclear.

• They encountered a question where they believed more than one option could be correct.

60

• They encountered a question where none of the options appear to be correct.

• They noticed any typos or discrepancies in the questions, options, or code examples.

I made note during this process of any issues participants encountered, asked them to explain

that difficulty, and how it could be improved. Once that participant finished the concept inventory,

I immediately integrated the necessary changes into the concept inventory. I iterated this process

with all pilot participants.

5.5 Concept Inventory Validation

Validation of an assessment tool can be done in a variety of ways. To test the validity of my concept

inventories and the items on each, I conducted item analysis and distractor analysis using R statistical

software [BC13; R C13]. I ran these analyses based on data gathered from a different sample than

the group used for the initial think aloud pilot.

5.5.1 Item Analysis

The most common form of test validation is item analysis [Gor97]. Item analysis determines if

inventory items are valid methods of assessment; most often, the item difficulty and discrimination

index are used to assess test quality [BC13]. For item difficulty, an item is considered too easy if its

item difficulty value (Item Difficulty, Table 5.2) is 0.95–1.00 and too difficult if it is less than 0.20. An

optimal question has an item difficulty value of 0.50, however, the primary goal is to not have any

questions, based on the item difficulty value, that are too hard or too easy.

A question is considered satisfactory if the discrimination index (Point Biserial, Table 5.2) is

greater than 0.20. The difficulty and point biserial values can be positive or negative; a negative value

suggests an item should be removed or replaced. The threshold value (Item Threshold, Table 5.2)

provides the same information as the difficulty value; the lower the value, the easier the question.

The biserial value (Biserial, Table 5.2) describes the degree of relationship between two interval

scales. For the type of validation needed for the inventories, the threshold and biserial are not

relevant.

To clarify the validation process, I present item analysis results from the exception handling

concept inventory as an example. This was the concept inventory that underwent the most change

as a result of this process. Table 5.2 shows the item analysis output from the initial set of exceptions

questions in the inventory and piloted with 10 students and developers. I wanted to include develop-

ers with industry experience to evaluate the more advanced questions on the inventory. I performed

pilots with students and those with industry experience to evaluate how well the concept inventory

assessed different levels of knowledge regarding exception handling. Based on the output, one of the

61

Table 5.2 Exception handling concept inventory item analysis results

Item
Difficulty

Item
Threshold

Point Biserial Biserial

Item 1 0.917 -1.383 0.271 0.489
Item 2 0.333 0.431 0.098 0.127
Item 3 0.667 -0.431 -0.024 -0.032
Item 4 0.917 -1.383 0.271 0.489
Item 5 0.500 0.000 0.553 0.694
Item 6 0.500 0.000 0.484 0.607
Item 7 0.583 -0.210 0.690 0.872
Item 8 1.000 -Inf N/A N/A
Item 9 0.500 0.000 0.899 1.000
Item 10 0.833 -0.967 0.495 0.738
Item 11 0.500 0.000 0.899 1.000
Item 12 0.667 -0.431 0.489 0.634
Item 13 0.583 -0.210 0.690 0.872
Item 14 0.667 -0.431 0.342 0.444

1. Exception is a direct subclass of what Java class?

(a) Object

(b) Error

(c) Runnable

(d) Throwable

Figure 5.2 Item removed from original concept inventory.

questions removed was item 3, which is shown in Figure 5.2. The discrimination index for this item

(-0.024) is too low, which means that it was not a good item for discriminating between students

who are knowledgeable in exception handling and those who are not. Based on these numbers, I

also removed items 4 and 8.

5.5.2 Distractor Analysis

I also used distractor analysis to evaluate the changes made during the think-aloud piloting. Dis-

tractor analysis determines if the options provided for a given question are fair and if the incorrect

options contribute to the quality of the inventory. If the incorrect options are nonsensical or would

make no sense as the answer, this takes away from the quality of the concept inventory. For example,

62

if the only item that makes sense is the correct response, the chances that students can guess the

right response as opposed to knowing the right response is increased.

The goal is for there to be no distractors that are not being selected and for the high performers

(middle to upper range) to most often select the correct response. Because this was the case in the

data for all the inventories, I kept all response options for each inventory item. 2 As with previous

work, because establishing reliability for one inventory requires data from multiple trials, it may be

better to save exploring reliability for future analysis [TG10; Tew10].

5.6 Limitations & Challenges

Despite the possibilities for our approach for creating and deploying these concept inventories,

there are some limitations.

• Upfront time commitment. Although there is value inside and outside the classroom in the

process we proposed for depth of knowledge assessment, there is an upfront time cost involved

in creating an inventory using our process. In my experience, after creating the first couple of

inventories, especially with the up front cost of understanding how to conduct item analysis

and what the results mean, the amount of time it takes to create new inventories decreases.

• Lack of automation for individual response assessment. Currently, to our knowledge, there

is no automated way to observe individual student responses and changes over time, outside

of item analysis. Item analysis, which we performed on pilot data from our concept inventories,

provide some insights into the effectiveness of each item on the evaluation. However, it does

not ease the process of determining which concepts need more attention in class or lab which

is one of the potential uses for our inventories.

• Guaranteeing responses are their own. Even though we did not deploy our concept invento-

ries for a grade, it is still possible that students used outside sources, or even each other, to

help determine answers on the inventory. There is no sure way to guarantee students are not

using outside resources. However, we attempted to mitigate this limitation by only allowing so

much time for taking the inventory and making it an in class exercise rather than a homework

assignment.

• Keeping concept inventories up to date. Depending on the language concepts are being

taught in, there may be a need to periodically re-assess the material on the inventory for

updating. So far, we have not had to make any updates however generics and exception

2The final live version of each concept inventory can be found, and taken, at the following urls: http://bit.ly/
null_quiz(null object dereferencing), http://bit.ly/generics_quiz(generics), http://bit.ly/exceptions_
quiz(exception handling).

63

http://bit.ly/null_quiz
http://bit.ly/null_quiz
http://bit.ly/generics_quiz
http://bit.ly/exceptions_quiz
http://bit.ly/exceptions_quiz

handling are great examples of language features that has evolved since it has been out.

Because our concept inventories aim to achieve depth of knowledge assessment, it is important

that all relevant sub-concepts are represented in the inventory.

These limitations and challenges are presented for the general application of these concept

inventories in a real world setting, such as the classroom or industrial training. I developed these

concept inventories to facilitate model building, which I discuss in detail in the next chapter.

64

CHAPTER

6

DEVELOPER KNOWLEDGE

CLASSIFICATION

In Chapter 5, I outlined an approach for assessing developer knowledge of programming concepts.

However, it is impractical and possibly infeasible to create a concept inventory for every program-

ming concept and then ask developers to take that inventory before or while using a tool. It would

be more practical and feasible if there was a way to use information already available to represent

developer knowledge. I propose using developer experiences, in the form of the code they have

written, to represent their conceptual knowledge.

Perception of any information provided to a developer is affected by that developer’s knowledge

and experiences; as a software developer, much of the knowledge accrued comes from experiences

writing and modifying source code [Cañ94; Raj95; Fri10; AMS11].

However, currently tools have no way of assessing anything about the developer’s knowledge.

Existing work in the area of source code mining has focused on measuring and predicting functional

and non-functional properties of software [HW09; Men07; HM11]. Contrary to much of the work in

this area, I used source code mining to predict developer knowledge of programming concepts.

Based on previous research that suggests I can use source code as an indicator of how much a

developer knows about a codebase [Fri10], I believe source code can also be an indicator of what

developers know about programming. Therefore, I designed a study to answer the following research

questions:

65

RQ1 : Is source code a good predictor of how much developers know about programming concepts?

RQ2 : Does concept-specific source code increase the ability to classify how much developers know

about programming concepts in comparison to a naive model?

To answer these questions, I built and evaluated models that classify developers’ conceptual

knowledge. To determine if source code is a good predictor, I compared these models to random

chance and a naive model that uses all the source code written by the developer (LOC). The as-

sumption is that if my models can classify developers with greater than 50% accuracy, they perform

better than random chance. I collected source code relevant to the Java programming concepts of

variables, exception handling, and generics from 19, 35, and 23 developers, respectively. I distributed

the concept inventories described in Chapter 5 to validate conceptual knowledge for each model.

I trained each model using source code the developers wrote pertaining to each programming

concept, or concept-specific code, in public GitHub repositories. I used unsupervised learning to

determine a model that classifies developers based on their conceptual knowledge. Specifically, I

calculated model metrics, such as precision, recall, and false positive rate, to determine and compare

model performance.

The contribution of this chapter is a validated approach and set of models for predicting devel-

oper conceptual knowledge using public developer source code contributions. For RQ1, I found that

models using source code outperformed a model that randomly assigns developers’ expertise. For

RQ2, I found that concept-specific models outperformed models that attempt to assign expertise

based on total lines of code (LOC) written.

6.1 Knowledge Acquisition

According to existing research, we acquire knowledge through our experiences [AMS11]. For exam-

ple, a chef’s knowledge regarding recipes, best practices, and what tastes good comes from their

experiences cooking in both professional and informal settings. Just as a chef gains knowledge from

her experiences, as do other professions. Software development is no exception [Fri10].

Much of what software developers do involves looking at, writing, or modifying source code.

There are a variety of other experiences that come with being a software developer. However, for

scoping and proof-of-concept purposes, I focus on the primary task of software development which

is writing code. In the following section, I discuss how I used concept inventories and developer

source code contributions to classify developer based on their conceptual knowledge.

66

6.2 Knowledge Classification

To determine the ability to use developer source contributions to predict developer knowledge, I

used concept inventories to validate developer knowledge and source code contributions on GitHub

to predict validated knowledge classifications. To explain the process used to validate and predict

developer knowledge, I will use a hypothetical developer Gabrielle and her experiences writing code

as an example.

6.2.1 Knowledge Validation

I conducted knowledge validation using concept inventories I designed from the process described

in Chapter 5. The scores from the concept inventories provide data that I used as an independent

attribute for each developer. In the following sections I will discuss how I used these scores in the

overall process of creating and evaluating knowledge models.

6.2.2 Knowledge Prediction

The goal of this study was to determine the possibility of using developer source code contributions

to predict how much developers know about programming concepts in their tool notifications. Using

developer source code, along with their concept inventory scores and the independent attributes, I

used unsupervised learning to determine the relationship between the two.

Source Code Contributions

To determine the dependent attributes for each model, and answer RQ1, I analyzed developers’

public repositories for code contributions and assigned them to developers using version control

(Figure 6.1b).

Consider the code in Figure 6.2, which is a portion of code from the JUnit4 repository.1 Gabrielle

contributes to this repository often, which provides rich data regarding her experiences with pro-

gramming concepts. I analyzed developer source code using the Eclipse JDT ASTParser [Fou15].

Analyzing code statically with the ASTParser detects the presence of concept-specific code. However,

it cannot tell us who contributed that code. In order to predict individual developer knowledge, we

need to be able to identify that developer’s code contributions.

Therefore, I used code bases in repositories so we could determine what developer made what

contribution via the commit history. Since I chose the versioning platform Git,2 I used JGit3, a Java

library that allows for manipulation of Git repositories via Java code. Also, next to SVN, Git is one

1http://junit.org/junit4/
2https://git-scm.com/
3http://eclipse.org/jgit/

67

http://junit.org/junit4/
https://git-scm.com/
http://eclipse.org/jgit/

Knowledge Validation

Features

Beginner Intermediate Advanced

Heuristics

Attribute Selection Developer Classifications

Subset Evaluation

Decision Tree Learning

a

Code Contributions

b

c

9/10

e d

f

Discretization

Figure 6.1 An overview of my approach.

of the most popular versioning softwares in use today.4 Along with using ASTParser, I used JGit to

analyze for individual developer code contributions.

Previous research suggests time may play a factor in how predictive code contributions can

be [Joh15], therefore I also used JGit to detect when the most recent contribution of each type

of concept usage was made. We chose to use GitHub, a social coding site where developers can

create and maintain Git repositories,5 as the source of data because GitHub stores Git repositories

and many repositories on GitHub are public. Once a plan was in place for analyzing developers

repositories, to answer RQ1, I next identify source code that is directly related to the programming

concepts of interest.

6.2.2.1 Concept-Specific Source Code

To answer RQ2, I collected concept-specific code and manually collected lines of code (LOC) added

to each repository for each developer from GitHub. I define concept-specific source code as code

4http://www.openhub.net/repositories/compare
5http://www.github.com

68

http://www.openhub.net/repositories/compare
http://www.github.com

Table 6.1 Source Code Collected for Variables

Source Code Description Example

Primitive Types

data type is one of the most basic

Java data types (i.e. int) and store

a value.?? (D)

int a = 3;

Non-Primitive Types
data type is a reference data type

and stores a reference to an object.? (D)
Object o = new Object();

Fields
created to be accessed globally

by a class.? (D)
public String s;

Local Variables
created and assigned a value to be accessed

locally by a method or construct.?? (D)
public String s = "hi";

Parameters
used as parameters to pass information

into a method the developer created.? ? ? (D)
public void foo (String s)

Public Variables includes the public modifier.?? (D) public String s = "hi";

Private Variables includes the private modifier.?? (D) private String s = "hi";

Protected Variables includes the protected modifier.? ? ? (D) protected String s = "hi";

Static Variables includes the static modifier.?? (D) static String s = "hi";

Final Variables includes the final modifier.? ? ? (D) final String s = "hi";

Transient Variables includes the transient modifier.? ? ? (D) transient String s = "hi";

Volatile Variables includes the volatile modifier.? ? ? (D) volatile String s = "hi";

69

Table 6.2 Source Code Collected for Exceptions

Source Code Description Example

Throws Methods
method that throws an

exception in the signature.? (U)

public void foo()

throws IOException

Try Statements non-empty try block.?? (U) try { ... }

Catch Blocks non-empty catch block.? (U) catch (IOException e){...}

Multi-Catch Blocks

non-empty catch block

that use the multi-catch

operator (|).? ? ? (U)

catch (IOException

| SecurityException e)

Try-With-Resources

non-empty try block that

uses the try-with-resources

feature.? ? ? (U)

try (BufferedReader br =

new BufferedReader())

Finally Blocks non-empty finally block.? ? ? (U) finally {...}

Throw Statements
statement in method body

that throws an exception.?? (U)
throw new IOException();

Exception Declarations
creation of a new exception

class.?? (D)

public class NewException

extends Exception

Catch Exceptions
non-empty catch blocks that

catch the generic Exception.?? (U)
catch (Exception e) {...}

Checked Exceptions

statement that uses exceptions

that are checked at compile

-time.? (U)

FileNotFoundException

Unchecked Exceptions

statement that uses exceptions

that are not checked at

compile-time.?? (U)

RuntimeException

70

Table 6.3 Source Code Collected for Generics

Source Code Description Example

Type Argument

Methods

method with generic type

argument(s).? (U)
public List<String> foo()

Wildcard Generics
usage of the wildcard type

parameter.?? (D)
List<?> String

Generic Type

Declarations

creation of new generic

class.? (D)
public class Bar<T>

Type Parameter

Fields

field with generic type

parameter(s).?? (D)
List<T> list;

Type Parameter

Method

method with generic type

parameter(s).?? (D)
public List<T> foo()

Diamond Generics
usage of the diamond

operator.? ? ? (U)
... = new List<>();

Explicit Method

Invocation

method invocation with

explicit generic type

arguments.? ? ? (U)

Collections.<Number, Long>collect(...)

Implicit Method

Invocation

method invocation with

implied generic type

arguments.? (U)

Collections.collect(...)

Generic Class

Instantiation

instantiation of a generic

class.? (U)
Bar<String> b = new Bar<String>();

Nested Generics
usage of generics within a

generic construct.? (U)
Map<Integer, List<String» map = ...;

Bounded Type

Parameters

generics with type

bounds.? ? ? (D)
List<T extends String> list;

71

1	public	class	LoggerRegistry<T	extends	ExtendedLogger>	{	
2	 	private	static	final	String	DEFAULT_FACTORY_KEY	=		
3 	AbstractLogger.DEFAULT_MESSAGE_FACTORY_CLASS.getName();	
4 	 		
5 	private	final	MapFactory<T>	factory;	
6 	 		
7 	private	final	Map<String,	Map<String,	T>>	map;	
8	
9 	public	LoggerRegistry()	{	
10 	 	this(new	ConcurrentMapFactory<T>());	
11 	}	
12	
13				public	LoggerRegistry(final	MapFactory<T>	factory)	{	
14							 	this.factory	=	Objects.requireNonNull(factory,	"factory");	
15							 	this.map	=	factory.createOuterMap();	
16				}	
17	
18				private	Map<String,	T>	getOrCreateInnerMap(final	String	factoryName)	{	
19							 	Map<String,	T>	inner	=	map.get(factoryName);	
20							 	 		
21 	 	if	(inner	==	null)	{	
22											 	inner	=	factory.createInnerMap();	
23												 	map.put(factoryName,	inner);	
24							 	}	
25							 	 		
26 	 	return	inner;	
27 	}	
28	
29	}	

Jan. 4, 2017 -- Gabby

May 30, 2016 -- Gabby

Sept. 30, 2016 -- Dan

Jan. 4, 2017 -- Gabby

Sept. 30, 2016 -- Dan

Sept. 30, 2016 -- Dan

Sept. 30, 2016 -- Dan
Sept. 30, 2016 -- Dan

Jan. 4, 2017 -- Gabby
Jan. 4, 2017 -- Gabby
Jan. 4, 2017 -- Gabby

May 30, 2016 -- Gabby
May 30, 2016 -- Gabby

Figure 6.2 Mapping of developer source code contributions on one class in an open source repository.

that, according to on-line resources, is relevant to understanding and using the concept in source

code. Since much of a developer’s experience is writing source code, and experience informs knowl-

edge [BT95; AMS11], I used total LOC as the naive model.

I used the same key concepts identified for the concept inventories to determine what concept-

specific code to analyze for. For each concept, I used the same resources used to create the concept

inventories to determine relevant code to collect from developers’ repositories. In the end, I collected

11 examples of generics usage, 10 examples of exception handling usage, and 12 examples of

variables usage.6 All of the code I collected, along with a description and example for each, is shown

in Tables 6.1– 6.3. I manually checked the added lines reported by GitHub on each developer’s

repositories to determine LOC for the naive model.

Because Gabrielle took the variables and generics concept inventories, I analyzed her repositories

for code that she contributed that related specifically to variables and generics. For example, looking

at the code in Figure 6.2, in the class LoggerRegistry<T extends ExtendedLogger>, Gabrielle

contributed both variables (lines 5 and 13) and generics code (lines lines 5, 13, and 23).

The output of the analyzer for each repository is an occurrence count for all contributed concept-

specific code and when the most recent contribution for each occurred. For example, looking at

Gabrielle’s contributions in LoggerRegistry<T extends ExtendedLogger>, Gabrielle added

two variables (a private final field at line 5 and a final parameter at line 13). For each variable she

contributed, the analyzer would also note that her most recent contribution for each was in the

6The repository that holds the analyzer used can be found at: www.github.com/brittjay0104/APATIANproto

72

past couple months. Prior to dividing the data by features or applying heuristics, I used the list of

concept-specific source code outlined in Table 6.1 (Variables), Table 6.2 (Exception Handling), and

Table 6.3 (Generics) to determine levels of source code usage.

6.2.2.2 Source Code Usage Hierarchy

I analyzed data from 19, 35, and 23 GitHub developers for variables, exception handling, and generics

(respectively). I used all the output from analyzing developers’ code repositories to determine which

types of concept usage might be more advanced than others. Based on frequency of source code

usage across repositories and developers for each concept (Figure 6.2), I created a hierarchy of

source code usage that outlines what source code collected might be considered basic, intermediate,

or advanced. Under the assumption that the more something is used the less difficult (and more

foundational) it is, I determined which features fit into which category by observing what source

code developers used most often versus source code developers use least often. For example, only

27% on the source code we collected included Bounded Type Parameters (Figure 6.2) as opposed to

the 99% of source code included Generic Type Declarations. Therefore, I consider Type Declarations

basic usage and Bounded Type Parameters advanced usage. I determined thresholds by a leap in

the total count of source code usage of more than 100. An example concept source code usage

hierarchy, along with a more detailed description of the creation process and usage, can be found in

Appendix C.

6.2.2.3 Data Features and Heuristics

To provide a wider range of generalizable attributes for answer our research questions, I characterized

the dependent attributes (Figure 6.1c) for the models by grouping concept-specific code collected

above based on features of the data.

For example, a feature of type parameter fields and methods (Figure 6.2, lines 5 and 13) that

groups them together is Gabrielle wrote new generic code (Declarations) for use by other developers,

rather than using existing generic code (Usages) as she did on line 23. The set of features identified

and used among the data are as follows:

• Levels of Concept Usage: I computed the Levels of Concept Usage by adding together counts

from the types of each concept that would be considered on a basic, intermediate, or ad-

vanced level of usage. I used the concept source code usage hierarchy discussed previously.

In Tables 6.1– 6.3, Basic usage has one star (?) at the end of its description, Intermediate two

stars (??), and Advanced three stars (? ? ?).

• Declarations: I computed Declarations for each concept by adding together counts from the

types of concept usage where the developer wrote new concept code for use by themselves

73

or others (i.e. type declarations or new exception type). In Tables 6.1– 6.3, Declarations are

labeled with a (D) at the end of the description.

• Usages: We computed Usage by adding together counts from the types of concept usage

where the developer is using code someone else wrote (i.e. method invocations), as opposed

to contributing to a new type. In Tables 6.1– 6.3, Usages are labeled with a (U) at the end of

the description.

Because I currently only collect variable declarations, all variable concept-specific code collected

for this study falls under Declarations.

Along with the above features, I also defined two heuristics to apply to the feature groups:

• Recency: The recency heuristic takes each of the initial attribute values and multiplies each

value by 1.0 if the most recent contribution was made in the last week, 0.8 if between one

week and one month, 0.6 for 1–6 months, 0.4 for one year, and 0.2 for more than one year. For

example, if, the total number of declarations made by the developer (Declaration heuristic) is

198 and the most recent declaration was written between one week and one month, the Type

Declaration Recency (DeclRecency) heuristic value would be 158.4 (198×0.8).

• Natural Log: This heuristic calculates natural log of each feature group before and after the

recency heuristic is applied.

I defined a recency heuristic because previous analyses suggested time may be a factor to

consider when modeling knowledge [Joh15]. For Gabrielle, if I only analyzed the class in Figure 6.2,

Gabrielle contributed a field, private variable, final variable, and parameter; all would be assigned

the same recency value (0.6) based on when she made the contribution(s). Gabrielle contributed 3

pieces of generic code: a type parameter field (line 5), a type parameter method (line 13), and an

implicit method invocation (line 23). However, as shown in Figure 6.2, Gabrielle contributed type

parameter fields and methods more recently than she contributed implicit method invocations.

Therefore, while Gabrielle’s type parameter field and method recency value is 0.6, her implicit

method invocation recency value would be 0.4.

I applied natural log to the data following the reasoning of Fritz and colleagues, who used natural

log in their models to account for the potential for large differences in attribute values [Fri10]. For ex-

ample, some repositories returned counts in the thousands for class instantiations but counts of zero

for explicit method invocations; this might cause the model to put more weight on the contribution

of feature groups and heuristics that include class instantiations than it truly contributes.

6.2.2.4 Developer Knowledge Classifications

Once the attributes have been calculated, I performed discretization to convert the continuous

concept inventory score values into intervals of values, or classes (Figure 6.1d) [FI93]. This step

74

became particularly important once I decided to use decision tree learners to answer the research

questions – I discuss the decision to use decision trees later in this section.

Discretization involves iteratively comparing attribute values for each instance and finding the

“best cut” in the data; each cut is considered a class of the data. A distinguishing feature of this data

set is its small size (just a few dozen rows). Hence, I cut the concept inventory scores for each model

into two and three classes to answer the research questions. Two classes comes from cutting on

the median. I chose three to account for the potential transition between classes [Dre04]. For the

three way split, with the small data set, I tried to maintain relatively even size chunks while making

sure there is some consistency across models (i.e. someone with a score of 7 or above is never a

beginner).

The generics data yielded ternary discretization (three classes) and the variables and exceptions

data yielded binary discretization (two classes). For data sets with three classes, I labeled each

developer as either Beginner, Intermediate, or Expert. For data sets with two classes, I labeled

each developer as either Beginner or Expert. Based on Gabrielle’s concept inventory scores and

source code data, she is labeled Expert for both generics and variables. We will talk about what the

differences in the discretization output might mean in Section 6.4.

6.2.2.5 Attribute Selection

Once I assigned classifications to each developer, I used developer knowledge classifications to

perform Correlation-based Feature Selection (CFS) in Weka, software that provides a collection

of machine learning algorithms for data mining [Hal09]. CFS helps to determine the attributes

best suited for each model (Figure 6.1e) [Hal99] by pruning irrelevant attributes, leaving only the

attributes that correlate the most with the developer’s classification.

This analysis runs k-fold cross validation using the attributes passed in; to lower the potential

for a model with overestimation bias, I maintained even and sizable chunks by using 4-fold cross

validation. CFS evaluates each attribute on its predictive ability and uses cross-validation to indicate

how stable the best subset of variables is based on how many folds the variable appeared in. For

increased model stability, I used the selection criteria that the attribute appear in two or more folds

to be included in decision tree learning.

6.2.2.6 Decision Tree Learning

To answer the research questions, I used decision tree learning. More specifically, I used Weka’s J48

classifier [Wit99] to create decision trees. Wolpert and colleagues [WM97] caution that one should not

expect any particular algorithm to work best for all possible inputs. Hence, when exploring new data,

is it necessary to conduct some experimentation to find useful settings for that data. Accordingly,

I ran different analyses and learners to determine which learner was most effective for the data

75

and research goals. Because there are so many machine learning algorithms availble, I neeeded to

narrow down the learners I would experiment with. I chose to compare regression, Naive Bayes,

and Decision Trees based on prior work with similar goals of making software development-related

predictions [Men04; Men07; HW09; Fri10]. I found decision trees to be optimal for answering the

research questions along with being more human readable.

Another motivation for using decision trees as opposed to regression or Naive Bayes is the

relatively heightened error tolerance provided by decision tree learners. Because I only used public

repository contributions, the data collected may have attributes with no data. For example, upon

analyzing a developer’s repositories I may find no occurrences of generic type declaration due to

the fact that the developer has written generic type declarations in a context not being analyzed (i.e.

local software projects). Using decision trees allows us to see meaningful relationships in the data,

regardless of any data that may be erroneous or inaccurate.

6.3 Knowledge Models

Based on developer classifications and the full set of attributes, CFS identified the following subset

of attributes that fit my selection criteria:

• Variables – Public Variables

• Exceptions – Advanced Exceptions, Try Statements Recency, Finally Blocks Recency, and

Throws Methods

• Generics – LOC, Generic Type Declarations, and Generic Type Declarations Recency

I created a decision tree model for each concept with all the concept-specific attributes above

to answer RQ1. To answer RQ2, I created a LOC only model, when LOC met the attribute selection

criteria, to compare to the concept-specific models. The values for each model’s precision, recall,

F-Score, TP (True Positive) Rate, and FP (False Positive) Rate are shown in Tables 6.4, 6.5, 6.6, and 6.7.

The resulting decision trees can be found in Figures 6.3, 6.4, and 6.5.

6.3.1 RQ1 Findings

All four decision tree models had total precision, recall, and F-Score of at least 60%, suggesting these

models correctly classified developers at least 60% of the time. Even the model built using LOC only

(Table 6.7) provided accurate predictions. This supports existing research that suggests all of our

experiences contribute to our overall knowledge [AMS11]; my findings quantify this notion, showing

it is possible to use developer experience to predict their knowledge. The models also exhibit low

FP rates, with a median FP rate of 19.9%. I observed the highest FP rate with the variables model

76

Table 6.4 Variables Model Accuracy

Public Variables

Beginner Advanced Total

Precision 0.571 0.667 0.627
Recall 0.500 0.727 0.632
F-Score 0.533 0.696 0.627
TP Rate 0.500 0.727 0.632
FP Rate 0.273 0.500 0.404

Table 6.5 Exceptions Model Accuracy

Advanced, Try Statement Recency,
Finally Block Recency, Throws Method

Beginner Advanced Total

Precision 0.789 0.750 0.771
Recall 0.789 0.750 0.771
F-Score 0.789 0.750 0.771
TP Rate 0.789 0.750 0.771
FP Rate 0.250 0.211 0.232

Table 6.6 Generics Model Accuracy (Non-LOC)

Declarations and DeclRecency (Generics)

Beginner Intermediate Advanced Total

Precision 0.667 0.727 0.875 0.729
Recall 0.333 0.889 0.875 0.739
F-Score 0.444 0.8 0.824 0.715
TP Rate 0.333 0.889 0.875 0.739
FP Rate 0.059 0.214 0.133 0.146

Table 6.7 Generics Model Accuracy (LOC only)

LOC (Generics)

Beginner Intermediate Advanced Total

Precision 0.5 0.636 0.875 0.684
Recall 0.333 0.778 0.875 0.696
F-Score 0.4 0.7 0.875 0.683
TP Rate 0.333 0.778 0.875 0.696
FP Rate 0.118 0.286 0.067 0.166

77

DeclRecency <= 132 DeclRecency > 132

Type Declaration > 5 Type Declaration <= 5

beginner

intermediate

advanced

LOC <= 38934 LOC > 38934

LOC > 5 LOC <= 5

Public Vars <= 3 Public Vars > 3

Throws Method <= 2 Throws Method > 2

Finally Recency > 0 Finally Recency <= 0

TryStmtRecency <= 0.4 TryStmtRecency > 0.4

Advanced Exceptions <= 0 Advanced Exceptions > 0

Figure 6.3 Variables decision tree model.

DeclRecency <= 132 DeclRecency > 132

Type Declaration > 5 Type Declaration <= 5

beginner

intermediate

advanced

LOC <= 38934 LOC > 38934

LOC > 5 LOC <= 5

Public Vars <= 3 Public Vars > 3

Throws Method <= 2 Throws Method > 2

Finally Recency > 0 Finally Recency <= 0

TryStmtRecency <= 0.4 TryStmtRecency > 0.4

Advanced Exceptions <= 0 Advanced Exceptions > 0

Figure 6.4 Exceptions decision tree model.

(Figure 6.3); I will discuss limitations that may have caused the difference in FP rate for the variables

model in Section 6.5.

Based on the attributes used in the decision trees shown in Figure 6.5 and Figure 6.4, how

recently concept-specific code was contributed can also affect conceptual knowledge. Based on

the recency heuristic, for example, a higher DeclRecency (Figure 6.5) value suggest more recent

code contributions related to declaring generic types. This suggests that determining a developer’s

knowledge of generics would involve observing both declarations and recent experience with

declarations. For exceptions, recency matters for some attributes, such as try statements and

finally blocks, while it is not as important for others, such as usage of advanced exceptions

language features. For variables, recency also did not appear to improve classification – the variables

model only includes the declaration of variables, which may have affected the ability to build an

accurate and convincing model.

These findings suggest that source code can be used to classify how much developers know

about programming concepts better than random chance.

78

DeclRecency <= 132 DeclRecency > 132

Type Declaration > 5 Type Declaration <= 5

beginner

intermediate

advanced

LOC <= 38934 LOC > 38934

LOC > 5 LOC <= 5

Public Vars <= 3 Public Vars > 3

Throws Method <= 2 Throws Method > 2

Finally Recency > 0 Finally Recency <= 0

TryStmtRecency <= 0.4 TryStmtRecency > 0.4

Advanced Exceptions <= 0 Advanced Exceptions > 0

Figure 6.5 Generics decision tree model.

6.3.2 RQ2 Findings

All three of the models that we trained using concept-specific attributes classified developers with

overall accuracy better than random chance (> 50%). As for comparing the concept-specific models

to a more naive model, after using CFS during data analysis, I was able to identify relevant attributes

before running cross-validation during tree building. For two of the three concepts evaluated,

LOC did not appear in enough folds during attribute selection to be considered during decision

tree learning. Even with the variables data, which only included attributes pertaining to variable

declaration, the most meaningful attributes were concept-specific. The only data set in which LOC

appeared in more than two folds was the generics data set. This suggests that in some cases, LOC is

not predictive of developer concept-specific knowledge.

Upon closer examination of the generics models, overall model performance is higher in the

Type Declaration model (74%) than the LOC model (70%), with increased precision and F-Score for

beginner (+0.167, +0.04) and intermediate (+0.09, +0.1) classification and increased total precision

(+0.05), recall (+0.04), and F-Score (+0.03). The only scenario where the LOC model outperformed

the Declarations model was when classifying developers with advanced generics knowledge (Ta-

ble 6.6). These findings suggest that although both LOC and concept-specific code can both be

used to predict conceptual knowledge, concept-specific code increases overall model accuracy and

precision.

These findings suggest that concept-specific code improves model performance when com-

pared to a naive model.

6.4 Implications

The ability to predict developer conceptual knowledge using attributes collected from source code

opens the doors for exploring the possible applications, including the ability to adapt tool notifica-

tions to developer knowledge. I discuss the potential for adapting tool output and some of the other

79

possible applications for these findings in detail below.

6.4.1 Program Analysis Tool Output

This study was motivated by the study reported in Chapter 4, which posed a theory regarding the

challenges developers encounter when attempting to understand, and eventually resolve, tool

notifications [Joh16]. The theory stated that the challenges developer encounter stem from gaps and

mismatches between their knowledge and how tools communicate. One way to assess this theory

is to explore the ability, and effectiveness, of adapting tool notifications to the knowledge of the

developer using them.

The ability to accurately classify developers’ conceptual knowledge is the first step towards

being able to provide meaningful notification adaptations. If a tool can automatically ascertain how

much a developer knows about the concepts relevant to a given notification, it can better tailor the

information provided to the information needed by that developer. The next step is to determine

what a meaningful adaptation for a given developer classification looks like; this work is described

in detail in Chapter 7.

Another way that developer conceptual knowledge can be utilized by program analysis tools

is to improve developers’ experience when first using notifications used by the tool [Joh15]. One

of problems that have been identified with program analysis tools, especially static analysis tools,

is the high volume of notifications that are sometimes presented [Joh13a]. We can use developer

conceptual knowledge to determine the notifications to prioritize. A common way current tools

prioritize notifications is by problem severity, however, such strategy may not be enough to ensure a

positive first experience. Also, findings from Chapter 4 suggest developers do not always agree with

the prioritization used by tools [Joh16]. Tools could improve the first experience by first presenting

developers with notifications the tool knows they can solve based on the concepts they understand

best.

6.4.2 Industry & Education Practices

For any given defect, there are one or more programming concepts relevant to understanding

and being able to resolve that defect. Similar to work on code review assignment [Bal13], another

potential application for my proposed approach for predicting conceptual knowledge is to assign

the best developer to resolve a defect or complete a code review. Although knowledge of the code

base is important [Fri10], my research suggests knowledge of concepts relevant to the defect or

code of interest is also important [Joh16]. My approach can be combined with other approaches,

such as those that look at the developer’s familiarity with the code base [Fri10], to assign defects to

developers that are most likely to be able to resolve them.

80

The ability to predict developer knowledge also opens the door for the potential to more effec-

tively assign teams in industrial and educational settings. For example, if the design and imple-

mentation of a project or piece of functionality requires specific conceptual knowledge, analysis of

developers’ existing source code can yield information for ensuring someone with the necessary

knowledge is on that team. Along the same lines, my approach can be useful for determining effective

pair programming pairs. Pair programming is an effective way of transferring knowledge [Plo15] and

fostering tool discovery [MHM11], both of which can aide in defect resolution. Knowledge transfer

is more likely to occur when the developers paired together differ in experience (i.e. one is novice

and one is expert). Furthermore, a previous study on pair programming found that the productivity

provided by pair programming can drop substantially when it comes to problem solving if both

programmers have experience with the problem at hand; this is especially true if the experiences

are recent and has not had a chance to be forgotten [LC06]. When it comes to pairing developers for

a specific task, our approach can be useful for determining which developer is more expert in the

concepts relevant to the task at hand.

6.5 Lessons Learned

Even with a glimpse into the possibility of modelling conceptual knowledge, there are limitations to

my current approach and challenges to overcome.

6.5.1 Limitations

One limitation to my approach is that it relies solely on source code available in public repositories;

not all developers have public repositories and usually not all the code a developer has written is

stored in one. Along the same lines, while analyzing developer source code can provide insights into

conceptual knowledge, this may not be entirely representative of everything the developer knows

about a given concept, or more importantly the notifications they encounter, which could lead to

initially inaccurate models.

Another limitation to the findings presented in this chapter is that I built the models with a

relatively small numbers of developers. Typically machine learning is done with large data sets,

however, due to the nature of the data collected I ended up with smaller data sets (20–30 data

points). I mitigated this limitation by using decision tree learning, which has been found to work

well with atypical data sets [Zha05b; Kot07].

One goal as I developed this approach was to provide a range of attributes relating to each

concept to increase the likelihood that we are being exhaustive of relevant and possibly predictive

code features. A limitation to my approach in this regard is how I dealt with a fundamental concept

like variables, which can include a large range of relevant features. In this work, I decided to focus on

81

various aspects of declaring a variable, such as data types and variable visibility, to narrow down the

space of attributes being analyzed. I believe this led to the less-than-compelling model for variables

conceptual knowledge found in Section 6.3. Although the model is not as compelling or complex as

the others, the variables model still suggests that using source code to predict concept knowledge

is better than random chance or a naive model. Another limitation is that for a small subset of

developers, at least one repository was not 100% Java. Repositories that fit into this category ranged

from 42% - 97% Java. Currently, my approach has only been evaluated on developers’ knowledge

of Java concepts, therefore a LOC model including non-Java code might have affected the results.

Another limitation to my current approach is that the metrics provided by GitHub for my LOC model,

in some data sets, include some non-Java contributions, such as documentation.

6.5.2 Challenges

Mirroring the small data set limitation, one challenge to using my approach is getting enough data

from the developer, especially if the developer does not have code in public repositories. One way

to deal with this challenges is to modify the approach to work in on local copies and in real-time to

detect developer concept-specific contributions in projects not stored in repositories.

Another challenge that comes with using my approach is determining how to deal with both

fundamental and nuanced programming concepts. The findings in this chapter suggest that it may

be more difficult to build an exhaustive and accurate model for fundamental concepts than it is for

nuanced concepts. This may suggest that there are ways that concepts group together that can may

affect how one should approach determining relevant code to collect. For example, the code we

collected for variables matches the information provided on the primary sources of variables-related

concepts used for the concept inventory. However, because declaring variables is necessary in most

programs, there may be a need to incorporate other information such as notifications pertaining

to variables the developer encountered, to get the best idea of what developers really know about

variables.

Along the same lines, another challenge for my current approach is the ability to generalize

across concepts. For the most exhaustive models, we can see similarities such as the fact that recency

is generally important. However, it is not obvious beyond that if there is a way to general what is

important to focus on when classifying developers based on their code contributions. A good starting

point for work in this area would be to determine the possibility of generalizing across a subset of

concepts with similar characteristics, such as splitting concepts by simple, fundamental concepts,

such as variables, methods, and classes, and more complex, nuanced concepts, such as generics,

exception handling, and concurrency.

Despite the limitations and challenges associated with my proposed approach, the results of this

study provided insights that can be used to further my research on improving the notifications tools

82

use. In the next Chapter, I discuss how we can use developer knowledge to improve communication

between developers and their tools.

83

CHAPTER

7

KNOWLEDGE-BASED COMMUNICATION

Based on findings from previous studies, tools do not always effectively communicating with de-

velopers. One reason this occurs is because of differences between developer knowledge and the

information provided by notifications, which I discovered in the study outlines in Chapter 4. Perhaps

if tools could ascertain how much developers know about the concepts present in the information

they provide, tools could provide feedback to better support developers in understanding and resolv-

ing defects. The previous chapter suggested the ability to use developer source code contributions

to predict how much they know about the concepts in tool notifications.

Given the ability to classify developers based on their knowledge of programming concepts, I

propose improving the communication between tools and developers by providing knowledge-based

notifications. Knowledge-based notifications would present information to developers based on

how much they know about the concepts relevant to the defect. To my knowledge, there are no

existing studies that have explored adapting the information provided by tool notifications.

Despite notification adaptation being a new research area, adaptive user environments are

becoming pervasive in research and practice [Zou08; AC07; SB09]. Adaptive User Interfaces (AUI)

use the experiences of users to adapt to better support the user. Most relevant to this research

are the models proposed by Zou and colleagues for adaptive menus in Eclipse [Zou08]. Similarly,

this research explores using source code and machine learning to predict user knowledge but for

adaptive tool notifications.

In this chapter, I discuss my current research which explores possible notification adaptations

84

and the ability to improve communication by improving the support provided by tools to fill knowl-

edge gaps and match developer expectations. To evaluate this proposal, I borrowed from existing

research on expertise and problem solving to determine potential notification adaptations to evalu-

ate and how they map to expertise. I used the same concepts used in previous chapters to create

and evaluate knowledge models: variables, exception handling, and generics. I found notifications

that communicate primarily about various aspect of these concepts, focusing on notifications that

communicate about defects that are found in real software projects [Aye07; Zhe06].

I conducted a user study with 14 students and professional developers with various backgrounds

and knowledge regarding the concepts of interest to evaluate their ability to resolve notifications

designed for their level of expertise. This study was designed to evaluate the following hypotheses:

H1 Knowledge-based notifications can decrease the time required for notification resolution.

H2 Knowledge-based notifications increase developer likelihood of resolving notifications cor-

rectly.

H3 Knowledge-based notifications decrease developer attempts to resolve notifications.

H4 Developer adaptation preferences match expectations, based on existing literature.

7.1 Proposed Approach

For adaptive tool notifications to be realized, it is necessary to determine how tools should present

information to developers. Previous research suggests one thing to consider when presenting

information regarding a defect is the knowledge of the developer [Joh16]. To evaluate H1 – H4, I

conducted user studies where I presented developers with adapted notifications and asked them

to resolve each. In this section, I will outline the related research I used to create the adapted

notifications and the approach I used to evaluate notification adaptations.

7.1.1 Notification Adaptations

Existing research on notification design focuses on the general information needs of all developers,

regardless of their knowledge regarding the notification or its concepts [Smi15; Bar14; Rob14].

Therefore, there is no existing work that has examined notification design for expertise to inform

the adaptations necessary for my approach. There does exists work, however, in other fields that

has examined problem solving and debugging in relation to programmer expertise [Lar80; McK81;

Wie93].

I used existing research in problem solving and debugging to inform the design of the adapted

notifications for each classification in my study, and help answer my research question. Based on

existing research, I determined the following minimal criteria for knowledge-based notifications:

85

• Notifications designed for developers classified as intermediate and expert for a given concept

provide brief notifications with goal statements to communicate the problem.

• Notifications designed for developers classified as novice for a given concept provide more

detailed notifications with goal statements and subgoals to communicate the problem.

• All notifications include examples and links relevant to the problem and its solution.

Previous research found that there is typically homogeneity within expertise groups (novice,

intermediate, expert) but that strategy selection and usage is based on expertise [McK81]. This

research also found that the intermediate and expert groups exhibited similar strategies. For this user

study, I chose to design notifications for a novice and expert split rather than novice, intermediate,

and expert. I made this decision because 1) designing 3 notifications per defect would have led

to longer sessions, 2) the models created in Chapter 6 suggest only 2–3 knowledge groupings per

concept, and 3) existing research suggests that intermediate and expert programmers solve problems

in similar ways [McK81].

Larkin and colleagues found that experts in STEM domains have common foundations when

problem solving [Lar80]. They found that experts use experience to work from a goal to a solu-

tion, while novices, who typically lack experience, required a goal and subgoals to reach a solution.

Similarly, Wiedenbeck and colleagues have done extensive work on expertise-based problem solv-

ing [Wie85; Wie93]. They posed five characteristics in expert mental representations, most of which

novices lack:

• It is hierarchal and multi-layered. This means experts have an understanding of high level

program structure and goals as well as low level data structures.

• It has explicit mappings between layers. Experts also have mappings between program goals

and data structures used to achieve them.

• It has a foundation. At the foundation of expert mental representations is the ability to recog-

nize basic patterns or plans.

• It is internally well-connected. Experts understand how components in the code work to-

gether.

• It is well grounded in program text. Experts are able to easily relate the various parts of their

mental representations, such as an abstract plan, to the source code.

Based on their research, I determined the information provided in novice and expert notifications.

The notifications modified for experts provide a goal statement rather than a problem statement.

86

Figure 7.1 A notification modified for a developer classified as a novice in exception handling.

87

Figure 7.2 A notification modified for a developer classified as an expert in generics.

88

Notifications modified for novices include a set of general subgoals for resolving the defects. Novice

notifications also include the problem statement used by FindBugs and the compiler.

I determined the goal statement for each notification by determining the general solution being

suggested by the problem statement. For example, the goal statement in Figure 7.2 is based on the

problem statement provided for raw type compiler warnings. However, the goal speaks to resolution,

letting the developer know she needs to “Correct the creation and/or initialization for the generic

collections.” There is also a link present, which is active and links to a top search page on the web

providing information regarding generic collections, if needed. I provided links throughout the

expert and novice notifications based on previous studies that suggest developers often leave their

working context to search the web for information [Joh16; Nas12].

I determined the subgoals for each notification by determining a) the possible solutions to the

defect, b) how to achieve those solutions, and c) how to generalize all of the above. It is important

to maintain a realistic environment with realistic information, therefore the ability to generalize

the information to other code snippets with the same defect was the most important. For example,

for the notification shown in Figure 7.1, the subgoals provide generally applicable fix options and

provide steps, links, and examples. Also, most importantly, these fixes would generally apply to this

defect no matter what code was implemented.

Existing research also suggestss developers use examples to understand and resolve problems in

code; often they go to sources like StackOverflow 1 to find examples with explanations as most tool

notifications do not include examples [Nas12]. My previous research , discussed in Chapters 3 and 4,

also found that professional developers like having insights regarding possible fixes to the problem .

Therefore, I included examples in all of the notifications. I primarily used StackOverflow to find code

examples for the notifications. I also used the same resources used to create the concept inventories

in Chapter 5.

7.1.2 Notification Selection

Using the criteria outlined above, I modified 9 program analysis tool notifications from FindBugs

and the Eclipse Java compiler, the same tools used in my previous study. I excluded ECLEmma to

scope the current problem and solution to textual notifications, as most environments and tools

use some form of text to communicate with developers. For each notification, I created a novice

version and an expert version.

To determine the notifications for the user study, I attempted to find pre-existing defects in

open source software. To narrow my search, I focused on defects that have been found to frequently

appear in real world software projects [AP10]. I narrowed my search down to mature projects that

were already Eclipse projects, could be relatively easily imported and compiled, and contains code

1https://stackoverflow.com/

89

https://stackoverflow.com/

Table 7.1 Notifications used in the user study.

Problem Tool

Variables Unwritten field FindBugs
Unused field/parameter FindBugs
Incompatible types FindBugs

Exception Handling Unhandled exception type Compiler
Method may fail to close stream on exception FindBugs
New exception not thrown FindBugs

Generics
Inferred type argument(s) do not conform to the
bounds of the type variable(s)

Compiler

Raw types: references to generic types should be
parameterized

Compiler

Cannot convert generic types Compiler

snippets with libraries that are more likely to be familiar to developers.

Once I imported the projects, I analyzed the projects for compiler errors and warnings pertaining

to the concepts of variables, exception handling, and generics. I also ran FindBugs on each project

to find defects pertaining to the concepts. I went through the relevant notifications one by one to

find code snippets that are not dependent on a large number of other classes and contain libraries

and functionality that are familiar to the developer. The latter criteria was to mitigate the threat of

developers looking at code that is not their own.

After analyzing a number of projects, I chose to go with the Java Collections library. I was able

to find existing notifications from FindBugs and the compiler relevant to the concepts of interest.

Because I needed enough notifications to populate my user study, I sometimes had to inject defects

into the source code. When this was done, I chose code snippets where only minimal changes led

to the introduction of the defect, error, or warning. Also, much of the code used in the library, and

the functionality the library is written for, are familiar to developers regardless of their contributing

to that code base. The final set of defects used in the study can be found in Table 7.1. For each

notification in the table, I created a novice and expert version, for a total of 18 notifications.

7.1.3 Adaptation Evaluation

Once I had a set of modified notifications, I developed a plug-in to facilitate evaluation of my

hypotheses. Finally, to help mitigate notification familiarity bias, which I found to be relevant

to notification understanding and resolution in Chapter 4, I only presented participants with the

modified notifications. This included disabling the relevant compiler notifications, which are familiar

notifications for participants. Example modified notifications are shown in Figure 7.1 and Figure 7.2.

My plug-in presents defects that have been augmented with modified notifications to participants.

90

I recruited participants for this study from academia and industry. I attempted to recruit par-

ticipants using various sources, including departmental mailing lists, social media, and personal

contacts. I was able to obtain 14 user study participants, most of which I obtained through personal

contacts in academia and industry. All participants had prior experience with Java, Eclipse, and

the Eclipse Java compiler. All but 4 participants had prior experience with FindBugs. Participants

ranged from undergraduate students to professional developers with years of industry programming

experience.

7.1.3.1 Study Design

To evaluate knowledge-based notifications, I need participants in the study to look at notifications

that are aligned and misaligned with their knowledge. A notification is aligned with a participant’s

knowledge if the classification the notification was designed for matches the developer’s classifica-

tion. To determine developer classification, each participant completed concept inventories on the

concepts relevant to the study. These are the same concept inventories used in Chapter 6.

Each session lasted approximately 1 hour. In this hour, I asked participants to resolve the 9 defects

selected. For the user studies I used two set-ups. Rather than having all participants look at the

same novice and expert notifications, I evaluated a novice and expert version for each notification

across user studies. I alternated between two groups, each group consisting of a different subset

of the 18 novice and expert notifications. In other words, all participants saw all 9 defects; but, for

example, the novice notifications participants in Group 1 saw, another participant in Group 2 saw

the expert version of that same notification.

At the beginning of each user study, I first briefed participants on what I would be asking them

to do during the user study. I also asked participants to rank their experience with Java, Eclipse,

FindBugs, and the Eclipse Java compiler on a scale of 1 to 10 (1 being unfamiliar, 10 being extremely

familiar).

During this time, I also included instructions specifically regarding information they can and

should be using to resolve the notifications and how to access it. Because I want to assess developers’

ability to resolve defects based on the information provided in the notifications, I asked participants

not to apply quick fixes. To reduce the temptation to use them, I disabled the information provided

by compiler outside of the marker and squiggly underline.

To re-enforce the process participants would be repeating during the study, I incorporated a

training exercise into the beginning of the study. During the training exercise, participants did not

have to resolve the notification but rather access and acknowledge the presence of the view that

provides defect information.

After the training exercise, participants worked their way through each defect in their set of 9. I

wanted to assess ability to resolve, therefore it was required that participants approach the problem

91

as if they were going to resolve it. However, I let participants know that if they felt they would need

more time than they had for the user study to explore and resolve the defect they could skip it. I

did not want to force participants to work until they resolved the problem; the pilots I conducted

suggested that after about an hour participants begin to feel fatigued and thereby less engaged in

the study.

After participants resolved, or attempted to resolve, each notification, I debriefed with them to

learn more about how they came to the solution they used. The goal of debriefing was to determine

if the notification contributed to or hindered their ability to resolve the defect. This was also an

opportunity to ask participants about experience with the individual defects.

I conducted three sessions remotely, therefore, I also had a remote set-up that I used to conduct

user studies with remote participants. The remote set-up was similar to the local set-up; the only

difference was that remote participants remotely controlled my computer to complete the user

study while local participants physically used my computer. I recorded audio and the screen for all

of the user studies in preparation for data analysis.

7.1.3.2 Data Analysis

One data point of interest was the time it took for participants to resolve each defect. Resolution of a

defect for the sake of this study began when the participant opened and began to use the notification

to work towards a resolution. For participants that attempted to resolve the defect without looking

at the notification, time began when they either a) explored nearby code as if to determine the

resolution or b) began fixing the defect if they did no exploring.

Along with time to resolve, I also collected data regarding the fixes participants selected to

implement. For each defect, a fix was considered correct if it both compiled and would not cause

new problems at runtime. For some defects, since they were pre-existing in the code base, I used

Java best practices examples to determine the potential solutions. I also kept track of how many

fixes participants attempted for each defect.

To supplement the quantitative data collected, and answer my RQ, I also analyzed the audio

for statements made regarding the notifications and how well participants felt the notifications

supported their resolution efforts. For example, findings from the study discussed in Chapter 4

suggest familiarity with the notification can also affect developers’ ability to interpret tool output.

Therefore, this is something I want to keep track of as it may be able to help better explain the

quantitative findings.

All participants completed all three concept inventories necessary for data analysis, therefore I

was able to use all the data provided by participants to evaluate my hypotheses. One participant

was unable to finish all the defects in the user study due to work obligations. Although he did not

get to all 9 notifications, since he completed the inventories I analyzed data collected from the 7 he

92

Table 7.2 Average time to resolve (seconds) aligned and misaligned notifications for each concept.

Aligned
Novices

Misaligned
Novices

p-value
Aligned
Experts

Misaligned
Experts

p-value

Variables 156.1 98.4 0.192 87.8 88.7 0.970
Exceptions 46.9 137.0 0.019* 42.2 79.1 0.042*
Generics 235.4 249.8 0.861 237 341 0.628
Total 148.25 180.7 0.446 83 140.2 0.130

did complete.

To determine the significance between the differences calculated, I used R with RStudio [R C13]

to run a two-sample unpaired t-test for set of aligned and misaligned values. I chose run a t-test

because it can provide accurate results despite my small sample size. A t-test is also an appropriate

test for comparing averages across two samples that are different sizes. For t-tests on data across

participants, I used an unadjusted alpha value of 0.05. For t-tests ran on all participants, due to

the large number of tests ran, I use a Bonferroni Correction for an alpha value of 0.03. I report the

findings from these analyses in the next section.

7.2 Adaptation Effectiveness

Using the data from the user studies, I evaluated my hypotheses regarding developers’ ability to

resolve defects and their notification preferences.

7.2.1 Resolving Adapted Notifications

H1 Findings

Average resolution time in seconds of defects with aligned and misaligned notifications are shown

in Table 7.2 and Table 7.3. Table 7.3 also reports the average attempts made to resolve notifications

for each concept. Average attempts and resolution time for each participant are listed in Table 7.4

and Table 7.5. I report a comparison of overall average resolution times and average resolution time

by participant and by concept. For each concept, I observed the difference between averages for

novices and experts. For each participant, I observed differences in their performance with aligned

and misaligned notifications.

Overall, it took participants less time to resolve the notifications aligned with their experience

than notifications not aligned with their experience. The difference between resolution time was the

largest for experts. This may have occurred because the notifications designed for novices provided

more information to read; some experts felt obligated to read all the information when presented

93

Table 7.3 Totals for aligned and misaligned defect resolution.

Aligned
Novices

Misaligned
Novices

p-value
Aligned
Experts

Misaligned
Experts

p-value

Variables
Total Defects
Attempted

9 6 N/A 14 11 N/A

% Resolved 78% 83% 0.8188 100% 91% 0.2618
Avg. Attempts
to Resolution

1 2 0.3558 2 2 N/A

Exceptions
Total Defects
Attempted

13 8 N/A 13 8 N/A

% Resolved 77% 100% 0.1529 100% 100% N/A
Avg. Attempts
to Resolution

1 1 N/A 1 1 N/A

Generics
Total Defects
Attempted

15 18 N/A 3 6 N/A

% Resolved 73% 61% 0.4655 100% 83% 0.4746
Avg. Attempts
to Resolution

2 3 0.0950 1 1 N/A

Total
Total Defects
Attempted

37 32 N/A 30 25 N/A

% Resolved 76% 75% 0.9238 100% 92% 0.1179
Avg. Attempts
to Resolution

1 3 0.03703* 1 1 N/A

94

with these notifications, regardless of whether they needed the information.

Nine of the 14 participants spent less time on notifications aligned with their knowledge than

they did on notifications not aligned with their knowledge. For one participant, based on the adjusted

alpha value (0.03), the aligned notifications significantly reduced the time to resolution (Table 7.5).

Also, despite there being more participants presented with aligned notifications (67) than misaligned

notifications (57), participants took less time overall to resolve aligned notifications (231.25 seconds)

than misaligned notifications (320.9 seconds). The difference was not significant, however, this

may be due to the fact that I did not take into account other relevant factors, such as defect and

notification experience, when determining developer concept knowledge classification.

The concepts I evaluated include fundamental and nuanced concepts. For exceptions and gener-

ics, the two more nuanced concepts, it took participants longer to resolve misaligned notifications. It

took participants significantly longer to resolve misaligned notifications on exception handling. This

was the case for both novices and experts in exception handling. With variables, the fundamental

concept, it took participants more time to resolve the notifications aligned with their experience.

This may be because 2 of the 3 notifications on variables I showed participants were a) associated

with defects the participant was familiar with so they resolved the defect without reading much, if

any, of the notification or b) notifications the participant would typically ignore.

The models I presented in Chapter 6 suggest generics may be the most nuanced of the three

concepts. Following that theory, it makes sense that it took participants longer to resolve notifica-

tions on average with the generics notifications, regardless of which notification they saw. Another

explanation for this phenomenon is the participants’ familiarity with the defect, as opposed to the

notification, based on their prior experience. Participants were generally more familiar with the

defects related to variables and exceptions than the defects related to generics.

Familiarity with the defect affected the time it took for participants to resolve notifications. This is

related to my prior research that found notification familiarity affects notification resolution [Joh16].

However, because I removed the familiar notifications, these findings suggest familiarity with the

defect affects resolution time. The effect of defect experience on resolution time was most evident

with the concept of generics. Participants were most familiar with the compiler warning provided

regarding raw types, therefore could all quickly provide a resolution regardless of the information

provided. Novices in generics credited their ability to recognize and resolve the problem to their prior

experiences with the problem. Participants were least familiar with the other two defects related to

generics, leading to larger times attempting to understand and determine the best resolution.

Knowledge-based notifications significantly decreased the time for developers to resolve ex-

ceptions defects, but did not significantly decrease the time for developers to resolve variable

or generics defects.

95

Table 7.4 Aligned and misaligned notifications resolved by each participant

Aligned Misaligned

Notifications
Resolved

Total
Notifications

Percent
Resolved

Participant
Notifications

Resolved
Total

Notifications
Percent

Resolved
5 5 100% P1 4 4 100%
4 4 100% P2 4 5 80%
4 5 80% P3 4 4 100%
4 5 80% P4 3 4 75%
4 5 80% P5 2 4 50%
4 5 80% P6 3 4 75%
5 5 100% P7 3 4 75%
3 5 60% P8 3 4 75%
5 5 100% P9 4 4 100%
2 3 67% P10 3 4 75%
2 3 67% P11 5 6 83%
4 4 100% P12 5 5 100%
6 6 100% P13 3 3 100%
5 6 83% P14 3 3 100%

Table 7.5 Average resolution times (seconds) for aligned and misaligned notifications by participant.

Participant
Average Time to Resolve

(Aligned)
Average Time to Resolve

(Misaligned)
p-value

P1 147.6 215.25 0.6018
P2 120.5 77.25 0.3245
P3 238 338.75 0.5994
P4 172.8 179.3 0.9607
P5 103.75 69 0.4511
P6 224.75 110.33 0.5086
P7 124.2 75 0.4537
P8 108.33 170.33 0.3871
P9 47.8 277.25 0.1836

P10 35 180.3 0.0200*
P11 76 111.4 0.4862
P12 47.5 132.6 0.0518
P13 75.5 59.3 0.6903
P14 64.6 130.33 0.4116

96

H2 Findings

Overall, novices and experts in a given concept resolved a larger percentage of notifications aligned

with their knowledge than notifications misaligned with their knowledge, as shown in Table 7.4.

The difference was the largest for experts (8%), who resolved all of the aligned notifications. This

difference existed even though participants encountered more aligned notifications than misaligned.

Six of the 14 participants were able to resolve all the aligned notifications presented to them

for each concept (Table 7.4). Two of the 6 participants resolved a higher percentage of aligned

notifications than misaligned notifications. The remaining four participants resolved 100% of the

defects presented to them, whether aligned or misaligned with their knowledge.

For 5 of the 14 participants, the aligned notifications led to resolution 5–30% more often than

misaligned notifications; these participants are highlighted in Table 7.4. Four participants were

able to resolve all the aligned and misaligned notifications presented to them, only one of which

was an expert across all concepts. Participants unable to resolve aligned notifications were often

conceptual beginners. For many participants in this group, along with being a concept novice, they

mentioned not having recent, or any, experience with the defect being presented. This combined

with their lacking conceptual knowledge may have affected their ability to resolve these defects in

the context and time limit of the study.

I found insufficient evidence to support an increase in ability to resolve.

H3 Findings

In order to resolve a defect, developers have to make changes to the source code. These changes

can lead to code churn in real software projects and affect the quality of that software [ME98; NB05;

Shi11]. The less code churn there is, the fewer opportunities there are for developers to introduce

new defects. For novices in a given concept, knowledge-based notifications significantly decreased

the attempts made to resolve the notifications. Some novices pointed out during this study that

when they are unsure of a fix, they would try something and use any errors that follow to refine the

solution. Despite the proclamation of this strategy, it took novices in a given concept significantly

fewer attempts to resolve notifications aligned with knowledge, averaging 1 attempt as opposed

to the 3 attempts for misaligned notifications. Experts took on average 1 attempt to resolve the

defects in the study, regardless of alignment with their knowledge. These findings suggest aligned

notifications were generally able to lead novices directly to a fix, where the misaligned notifications

led to fishing expeditions for a fix.

97

Table 7.6 Participants whose notification preference aligned exactly with expectations.

Concept Novice Expert Total

Variables 2 2 4
Exception Handling 1 2 3
Generics 3 1 4

Table 7.7 Participants whose overall notification preference aligned with expectations, but noted a varia-
tion in their preference.

Concept Novice Expert Total

Variables 1 2 3
Exception Handling 1 1 2
Generics 3 1 4

Knowledge-based notifications significantly decreased novice developers’ attempts to resolve

notifications but did not affect the number of expert developer attempts.

The differences discovered in exploring H1 – H4 are promising and suggestive. This was a first run

of user studies in a research area that has not been explicitly explored. Along with the quantitative

data discussed above, I collected qualitative data regarding participants’ notification preferences to

further explore the usefulness of adapted notifications.

7.2.2 Adaptation Preferences

One explicit question I asked participants was their preference regarding the set of notifications

provided for each concept. Ten participants selected a version they preferred for each concept. The

distribution of instances when participant preferences matched preferences exactly, per concept, is

shown in Table 7.6. The distribution of instances when participant preferences matched, but with

some variation, is shown in Table 7.7. Four participants could not provide a best notification across

concepts, typically due to their varying experience with the defects presented. We discuss these

findings in detail below.

When the 10 participants were experts in a given concept they preferred the shorter, more

concise notifications that were designed for them. As suggested by prior research, experts typically

already had plans for resolving the defects [Lar80; Wie93], so they preferred some combination of

the problem statement, goal statement, and examples provided. In 5 instances, across all concepts,

participants preferred aligned notification, exactly matching expectations, and made no mention of

information that should be added or modified. In 4 instances, however, participants preferred the

98

aligned notification but had some suggestions for how the notification could better communicate the

problem. For examples, participants in this group mentioned wanting the subgoals to be available

for confirmation of their actions. Some of the suggestions made by experts matched those made by

novices. I discuss variations suggested by both novices and experts later in this section.

When the 10 participants were novices in a given concept, they most often preferred the noti-

fications designed for them, with subgoals that walk them through the problem and its solution.

In 6 instances, these participants preferred the aligned notification as is, with no mention of addi-

tional information or modification needed. In 4 instances, however, participants found that they

preferred the aligned notifications but would find even more value with certain modifications. For

example, participants preferred solution-oriented subgoals (i.e. “do this” or “try that”) rather than

the exploration-oriented subgoals (i.e. “find this” or “look at that”). The few times novices did not

prefer the aligned notification, they noted preferring the expert notification because their prior

experience with resolving the defect made the other information unnecessary.

All participants, both novice and expert, found the goal statements provided useful, especially

when they were prescriptive (i.e. “Add missing throw statement”). Often, participants preferred

the goal statement to the problem statement when it was available. All participants also found the

availability of examples in the notification useful, as suggested by previous research [Nas12]; for many

this was considered the most valuable information provided. Participants preferred short examples

that closely matched the code they were looking at. Four participants noted being distracted by or

having difficulty determining the useful parts of examples that were too long or too different from

the code they were working in. Similar to findings from [Nas12] on what makes a good example on

StackOverflow, some participants wanted explanations with the code examples provided to ease

integration into their own code. Two participants requested the examples be partnered with the

appropriate subgoal(s).

For 4 participants, it was difficult to pick just one version for each concept; most often, it was

when participants were expert in a given concept that they had more than one best notification.

In 8 instances, participants had varying levels of experience with the defects they had to resolve,

which they stated made resolution difficult, particularly for generics and exceptions notifications.

For these participants, the information they preferred depended on the defect they were trying

to resolve. This coincides with my previous research, from Chapter 4, that suggested notification

experience affects ability to understand and resolve notifications.

Inability to select a best notification may have also been affected by the grouping I selected

for my two group set-up. For the purposes of this study, and based on existing research [McK81],

I grouped intermediate developers with experts. There was one participant who was classified

as intermediate in generics, based on her score on the concept inventory, but because I chose

a two–option study design she was considered aligned with expert generics notifications in the

study. During her session, she constantly mentioned missing the subgoals when she did not have

99

them. She noted that it was not that she always needed them but that it was nice to have them

there when she did. She is also one of the experts that could not decide across concepts which

notifications she preferred. It may be that there is a difference between intermediate expertise in

software development and intermediate expertise in other STEM areas.

Developer adaptation preferences typically match expectations, but with caveats.

7.2.3 Threats to Validity

The findings from this study are promising and provide insights into the information needs of

developers based on their conceptual knowledge. There are threats to the validity of this study that

affected the results, which I discuss next.

7.2.3.1 External Threats

This user study evaluated modifying notifications from two tools amongst a number of tools that

are available. We also only focused on Java software projects. However, the defects that we chose are

reported by various tools and for different languages, increasing my confidence that these findings

would generalize to other languages and tools.

Also, a common concern with empirical studies is the number of participants. Given the time-

intensive nature of this study, I was only able to recruit 14 participants. This is on par with other

similar studies [Smi15; Lay07], though it may seem like a low number of participants. Along the

same lines, there was a large number of participants classified as experts in exceptions which led to

expert-heavy data for that concept; the same was true for generics novices.

7.2.3.2 Internal Threats

I had to develop a plug-in that was capable of presenting the information I wanted to evaluate

in a timely manner, therefore I was unable to implement a fully functional analysis tool. Rather I

created a tool mock up that simulated the behaviors of a real tool. This introduced the potential

for unexpected behavior and technical issues when running the application. I ran multiple pilots

prior to the actual user studies to work out as many technical issues as possible so the set up was as

realistic as possible.

Another technical issue that introduced a threat was the lag that came with conducting the

remote interviews.This sometimes affected the time it took participants to resolve the defects. For

international participants, there also appeared to be a difference in the keyboard shortcuts typically

used in Eclipse, which also affected some participants’ resolution times.

100

Due to time limitations, one participant was unable to address all the variables notifications. This

also affected my results regarding H1 and H2. However, rather than throwing out this participant’s

data, I included it to show where value was provided in other notifications.

7.2.3.3 Construct Threats

There also exists the threat of participants having to resolve defects in code that is not their own.

This can affect the time it takes and how confident developers may feel about their fix. To mitigate

this threat, I chose code snippets for each defect simple enough to be comprehensible in a short

period of time but complex enough to still feel realistic.

As discussed in Section 7.1.1, I designed the notifications for this study based on theories of

learning in STEM, which may not apply specifically to resolving bugs in code. Having to start

with research from other fields, and not specifically pertaining to notification design, may have

affected the overall findings in particular. It is unclear whether proposed similarities between

problem solving in other fields and Computer Science is still valid and apply to tool output. However,

there are improvements these findings suggest that can be made to potentially further improve

communication between developers and their tools.

In some situations, participants could look at the code and recognize what the problem was or

might be based on their prior experience. When this happened, some participants did not look at

the notification provided prior to resolving; this was often the case with those classified as concept

experts. This affected the ability to get feedback on what was and was not useful in the information

provided. I attempted to mitigate this threat by asking those who did not use the notification to look

at it after the fact for consistent debriefing.

7.3 From “Pipe Dream” to Reality

Findings from this study suggest that notifications modified and presented based on developer

knowledge can be used to improve developer ability to understand and resolve defects. Even better,

notifications that were modified to match developer knowledge sometimes reduced the time it took

for resolution, suggesting the possibility of helping developers resolve defects more quickly. Along

with the general idea of adapting tool output to the developer’s level of knowledge, these findings

have other implications which I discuss next.

The theory presented in Chapter 4 suggested that lack of knowledge regarding a defect or

notification pertaining to a defect can affect a developer’s ability to resolve them. The findings from

this study support these findings and suggest that defect experience may play a greater role in action

than could be realized theoretically. The data analyzed in this study suggests defect experience

can sometimes make up for lacking conceptual knowledge, suggesting that concept knowledge

101

coupled with defect knowledge may be more effective when determining developer classification. As

I expand this area of my research, I plan to explore the feasibility of collecting and using information

regarding defect resolution for improved knowledge classification.

Participants classified as novices in a given concept valued, and most often preferred, notifica-

tions that included subgoals that walked them through potential solutions to the defect. This aligns

with existing research that suggests this is how novices solve problems [Lar80], and provides specific

content to the notion of providing “more” information to novices. For some concepts, there is more

than a novice to expert progression. In this study, there was a participant who wanted the subgoals

to always be available. One way to potentially account for concepts where there is an intermediate

stage is to have subgoals always available but only expanded and visible initially for novices. This

would also support experts like some of the participants in this study that occasionally found value

in the subgoals being present. Participants classified as concept experts preferred notifications that

provided concise feedback and confirmation on the problem in the code. These participants rarely

went past, and typically preferred, the problem and goal statement when subgoals were available.

The only time experts scrolled past the goal and problem statement was when they could not recall

what the resolution looked like and wanted to see examples or to confirm their process or resolution.

Both concept novices and experts valued examples in the notifications, validating the decision

to include them in both notifications. For novices, the examples often served as directions for how

to implement a fix. For experts that used the examples, they were used as confirmation of fixes they

already had in mind or implemented. Novices and experts also agreed that if examples are going to

be present, they should be similar to or match the context of the code the defect is attached to. This

would allow them to more quickly map what the example was suggested to the proper resolution

for their code, something that research has found to be a desired trait [Nas12]. Some participants

suggested using general examples that are similar to the code with the defect, while others suggested

using examples out of the code base they are in that match or are similar. Another example–related

suggestion made by concept novices was to break down the examples to match up with the subgoals.

Perhaps further exploration will find novices and experts have preferences regarding the kind of

example presented to them.

7.3.1 Challenges to Overcome

One challenge that must be overcome to fully realize adaptive notifications and tools is the challenge

of determining the first kind of notification to show developers, either novice or expert. I have shown

we can use source code to classify developers based on their knowledge, but tools and environments

would need access to both developers’ source code and the attributes in developer’s source code

that matter for that concept.

Another challenge to overcome is how tools will retrieve information to populate the notifications.

102

My user study used manually modified notifications; although this is useful for a study setting it

is less useful, and less practical, to have to manually modify all the notifications a tool provides.

Also, having to manually update existing notifications might de-motivate toolsmiths from wanting

to invest the time to do it. One area for further research is to explore the possibility of automating

notification modification. One way this might be done is by borrowing from relevant StackOverflow

posts that include steps to resolve similar defects.

In this proof-of-concept study, I chose notifications that communicate about one concept each.

In reality, some notifications communicate about multiple concepts at a time. To fully realize the

potential of adapting notifications, there needs to be a way to determine all the concepts in a

multi-concept notification and what information in the notification maps to which concept. For

example, what should tools do with multi-concept notifications when presenting to a developer

who is an expert in one of the concepts but a novice in the rest? Ideally, the tool would modify bits

of information that communicate about the concepts the developer is less experienced with.

Finally, findings from this study suggest examples are an important and valued part of developers’

defect resolution process. Therefore, when examples are included, it is important to find the best,

most relevant examples to display. The data collected from this study suggests the best examples

for both novices and experts may be those that are similar to or match the code being fixed, are

short, and highlight the important parts of the example if not able to be short. Some participants

mentioned wanting examples directly from the same code base if possible. More focused research

should be done to better understand the examples developers find useful and more importantly

how tools can access and display these examples.

103

CHAPTER

8

CONTRIBUTIONS AND FUTURE WORK

This dissertation outlines and describes the findings of four studies designed to evaluate my thesis

that program analysis tool use is a form of communication and inability to interpret and resolve no-

tifications is a result of miscommunication caused by knowledge gaps and knowledge mismatches;

therefore we can improve tool design by providing the means for tools to classify individual de-

veloper’s conceptual knowledge and adapt notifications accordingly, leading to the potential for

reducing time required for developers to resolve tool notifications, increasing ability to resolve, and

decreasing attempts made when resolving.

All together, they provide an in-depth understanding of how developers use tools and ways to

improve how notifications support developers during tool use. Each study built on the previous,

revealing more about the state of current tools, improvements that can be made, and how we might

make the improvements a reality.

In summary, the contributions of this dissertation are as follows:

• A categorized list of reasons developers have for not using program analysis tools, accompa-

nied by tool design suggestions provided by developers.

• An explanatory theory for the challenges that developers encounter when interpreting infor-

mation provided by tool notifications.

• An approach for assessing developer depth of programming concept knowledge that builds

on an existing validated approach for assessing breadth of knowledge.

104

• An approach, based on existing problem solving research, for adapting tool notifications

based on developer concept knowledge classification.

This dissertation focused on one potential route to improving notifications, via making specific

changes to tool output and presenting that output to developers based on how much they know

about the concepts present in the notification. However, findings from the studies discussed in

this thesis suggest various routes that can be explored and exploited to improve communication

between developers and the notifications used by their tools. Based on the contributions from this

thesis, below I briefly discuss some ares for future work that build on the theoretical and technical

foundations laid by the work completed in this thesis.

8.1 Future Directions

8.1.1 The Big Picture

The first 7 chapters of the thesis laid out a progression of studies that came together to suggest one

possible solution for improving how tools communicate with developers. Based on this proposed

solution, I first outline future work toward the big picture of adaptive tool notifications.

8.1.1.1 Notification Adaptations

The final study in this thesis suggests the potential for improving communication with developers by

using their knowledge to adapt the information provided. One way to improve and further evaluate

the effectiveness of notifications adapted to developer knowledge is to provide more accurate

developer classifications that are based on more than just the code they write, as discussed in the

previous section. Another way to realize the potential of adaptable tool notifications and the support

they can provide is to further explore and generalize the design decisions that inform notification

adaptations.

Novice and expert developers find value in examples when writing and maintaining their source

code [Nas12], as was supported by the findings in Chapter 7. One direction for further research is

determining what makes a good example in the context of resolving notifications and the differences,

if they exist, between examples experts and novices consider good. Previous research that explored

what makes a good examples did so using votes on the site [Nas12]. I propose research that both

explores the usefulness of these examples and differences between examples novices and experts

find valuable in practice. For example, some participants from the study in Chapter 7 mentioned

preferring examples that are similar to the code they are working on. Does this preference propagate

across experts and novices? Are there differences between the examples novices and experts find

useful for helping them resolve tool notifications? These are the types of questions this direction of

research would explore.

105

Another area for future work in terms of notification adaptations is to determine the concepts in

a notifications and how having multiple concepts, where the developer may be more knowledgeable

in one than the other(s), affects overall classification for a given notification. All of the notifications

I evaluated my proposed solution with communicated about one programming concept exclusively,

which is not always the case. How can we determine all of the concepts relevant to a given notifica-

tion? How are multi-concept adaptations different from single concept adaptations? These are the

kinds of questions this area of research will answer.

8.1.1.2 Incorporating Automation

Another step necessary to realizing the big picture of adaptive tool notifications that better support

developers is to determine how models would be incorporated in the process of developing tools

and presenting tool output. The study in Chapter 7 assigned developer classification manually,

which is not practical or feasible in a real world setting. Another area for future work is exploring

the potential for automating model creation and usage. This could be one research study, or split

into multiple studies. One study could explore how to automate the creation of a model based on,

for example, developers on a given project. The next study would then explore how tools could

automatically populate these models to determine developer classification.

Another automation piece that is necessary is for tools to be able to automatically create and

present the appropriate notification to a developer, depending on their classification. The study

in Chapter 7 laid a foundation for this by determining the kinds of information notifications may

need to present. The next step is to determine what information to present in real time along with

how, and from where, this information is gathered and presented. This includes determining the

concepts relevant to the notification, which informs what classification(s) should be considered for

presentation and the goal, subgoals, and best examples to include.

8.1.1.3 Dealing with Change

Knowledge is not stagnant. It fluctuates with our experiences, or lack there of. Therefore, it is

necessary for adaptive tools to have that same kind of flexibility. Another direction for future work

is to understand how models and tools can keep up with the changes that happen in developer

knowledge across time. Along the same lines, it is not clear how to identify when a developer is

transitioning or has transitioned from one stage of expertise to another. This is particularly important

for developing tools that are able to consistently support developers, rather than becoming useless

once a developer has gained or lost knowledge on a given concept. One solution to explore is the

possibility of collecting developer experience in real time to populate knowledge models and allow

for constant refinement of their classification.

Because knowledge is ever-changing, there may other ways necessary to accommodate developer

106

information needs. Future research could take a deeper time into information needs, how they may

change over time, and developer knowledge changes map, or do not map, with information need

changes. Expandable information and feedback loops are two mechanisms that can be used to

provide developers with more control over the information provided while potentially providing

tools with information they can use to improve communication later down the line.

8.1.2 Developer Knowledge Acquisition

One contribution from my thesis is the notion that we can use the source code developers write

relevant to a given programming concept to determine how much they know about that concept.

Findings from the last two studies suggest that outside of the code developers write, there maybe

other experiences that affect developers’ overall software development knowledge such as the defects

they have encountered or resolved. One future direction for this research is to further, and more

explicitly, explore factors that affect developer knowledge and feasibility of providing information

regarding those factors to tools.

If it is possible to collect and use source code contributions, there are other contributions and

activities that we can collect from developers to evaluate the role they play in overall knowledge.

For example, this thesis found that developer experiences with defect resolution affect their ability

to interpret and resolve defects. The approach I proposed for classifying developer knowledge

could be improved by collecting defect resolved or issues opend and closed by a given developer

and analyzing the relationship between defects that developer has encountered, resolved, and left

unresolved and their knowledge pertaining to the notifications she is presented with. Other factors

that future research will consider include developer interactions with specific tools and notification

text and frequently visited on-line resources.

Research has also found that sometimes knowledge is acquired informally, sometimes without

realizing it, through peer interactions [For89; GL03; MHM11]. Therefore, another area of research to

explore is how peer interactions affect knowledge that contributes to developers’ ability to under-

stand and resolve notifications. Peer interactions come in various forms, from pair programming to

casual conversations, so this research would explore the effects on knowledge produced from both

settings. It may be that, for example, knowledge acquired during formal activities like pair program-

ming provide knowledge more specific and useful to notification interpretation and resolution than

knowledge acquired during informal activities like casual conversation.

8.1.3 Developer Knowledge Classification

For any given defect, there are one or more programming concepts relevant to understanding

and being able to resolve that defect. Similar to work on code review assignment [Bal13], another

potential application for the proposed approach for classifying developers’ conceptual knowledge

107

is to assign the best developer to resolve a defect or complete a code review. Although knowledge of

the code base is important [Fri10], my thesis research suggests knowledge of concepts relevant to

the defect or code of interest is also important [Joh16]. My approach can be combined with other

approaches, such as those that look at the developer’s familiarity with the code base, to assign

defects to developers that are most likely to be able to resolve them. Another direction for this

research would be exploring the relationship between the code contributed by a given developer,

the code reviews and issues they have completed, and their fit for completing a pending pull request

or closing an open issue/defect. This type of evaluation, like the ones completed for the thesis, can

be automated and use publicly available data from developers’ code repositories.

The ability to classify developer knowledge also opens the door for the potential to more ef-

fectively assign student teams in industrial and educational settings. For example, if the design

and implementation of a project or piece of functionality requires specific conceptual knowledge,

analysis of developers’ existing source code can yield information for ensuring someone with the

necessary knowledge is on that team. Along the same lines, our approach can be useful for de-

termining effective pair programming pairs. Pair programming is an effective way of transferring

knowledge [Plo15] and fostering tool discovery [MHM11], both of which can aide in defect resolution.

Knowledge transfer is more likely to occur when the developers paired together differ in experience

(i.e. one is novice and one is expert). Furthermore, a previous study on pair programming found that

the productivity provided by pair programming can drop substantially when it comes to problem

solving if both programmers have experience with the problem at hand; this is especially true if the

experiences are recent and has not had a chance to be forgotten [LC06]. When it comes to pairing

developers for a specific task, our approach can be useful for determining which developer is more

expert in the concepts relevant to the task at hand.

108

BIBLIOGRAPHY

[Ado11] Adolph, S. et al. “Using grounded theory to study the experience of software develop-
ment”. Empirical Software Engineering 16.4 (2011), pp. 487–513.

[Alm06] Almstrum, V. L. et al. “Concept inventories in computer science for the topic discrete
mathematics”. ACM SIGCSE Bulletin. Vol. 38. 4. ACM. 2006, pp. 132–145.

[AT04] Altmann, E. M. & Trafton, J. G. Task interruption: Resumption lag and the role of cues.
Tech. rep. Defense Technical Information Center, 2004.

[AC07] Amershi, S. & Conati, C. “Unsupervised and supervised machine learning in user
modeling for intelligent learning environments”. Proceedings of the 12th international
conference on Intelligent user interfaces. ACM. 2007, pp. 72–81.

[Ant] ANT. http://ant.apache.org/.

[AMS11] Argote, L. & Miron-Spektor, E. “Organizational learning: From experience to knowl-
edge”. Organization science 22.5 (2011), pp. 1123–1137.

[Aye08] Ayewah, N. et al. “Using static analysis to find bugs”. IEEE Software 25.5 (2008), pp. 22–
29.

[AP08] Ayewah, N. & Pugh, W. “A report on a survey and study of static analysis users”. Proc.
DEFECTS. 2008, pp. 1–5.

[AP10] Ayewah, N. & Pugh, W. “The google findbugs fixit”. Proceedings of the 19th international
symposium on Software testing and analysis. ACM. 2010, pp. 241–252.

[Aye07] Ayewah, N. et al. “Evaluating static analysis defect warnings on production software”.
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering. ACM. 2007, pp. 1–8.

[Bac09] Baca, D. et al. “Static Code Analysis to Detect Software Security Vulnerabilities-Does
Experience Matter?” Availability, Reliability and Security, 2009. ARES’09. International
Conference on. IEEE. 2009, pp. 804–810.

[Bal13] Balachandran, V. “Reducing human effort and improving quality in peer code reviews
using automatic static analysis and reviewer recommendation”. Software Engineering
(ICSE), 2013 35th International Conference on. IEEE. 2013, pp. 931–940.

[Bar14] Barik, T. et al. “How Developers Visualize Compiler Messages: A Foundational Approach
to Notification Construction”. 2nd IEEE Working Conference on Software Visualization.
2014.

[Ben08] Bennett, C. et al. “A survey and evaluation of tool features for understanding reverse-
engineered sequence diagrams”. Journal of Software Maintenance and Evolution: Re-
search and Practice 20.4 (2008), pp. 291–315.

109

http://ant.apache.org/

[Bes10] Bessey, A. et al. “A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in
the Real World”. Commun. ACM 53.2 (2010), pp. 66–75.

[Big94] Biggerstaff, T. J. et al. “Program understanding and the concept assignment problem”.
Communications of the ACM 37.5 (1994), pp. 72–82.

[BC13] Boopathiraj, C & Chellamani, K. “Analysis of test items on difficulty level and discrim-
ination index in the test for research in education”. International Journal of Social
Science & Interdisciplinary Research 2.2 (2013), pp. 189–193.

[BT87] Bowman, J. P. & Targowski, A. S. “Modeling the communication process: The map is
not the territory”. Journal of Business Communication 24.4 (1987), pp. 21–34.

[BT95] Bromme, R. & Tillema, H. “Fusing experience and theory: The structure of professional
knowledge”. Learning and instruction 5.4 (1995), pp. 261–267.

[Bru96] Bruckhaus, T. et al. “The impact of tools on software productivity”. IEEE Software 13.5
(1996), pp. 29–38.

[Cañ94] Cañas, J. J. et al. “Mental models and computer programming”. International Journal
of Human-Computer Studies 40.5 (1994), pp. 795–811.

[CS14] Corbin, J. & Strauss, A. Basics of qualitative research: Techniques and procedures for
developing grounded theory. Sage publications, 2014.

[Das02] Dastani, M. “The Role of Visual Perception in Data Visualization”. Journal of Visual
Languages and Computing 13.6 (2002), pp. 601–622.

[Dea82] Dean, M. “How a computer should talk to people”. IBM Systems Journal 21.4 (1982),
pp. 424–453.

[Dre04] Dreyfus, S. E. “The five-stage model of adult skill acquisition”. Bulletin of science,
technology & society 24.3 (2004), pp. 177–181.

[Dug00] Dugan, J. B. et al. “Developing a low-cost high-quality software tool for dynamic fault-
tree analysis”. Reliability, IEEE Transactions on 49.1 (2000), pp. 49–59.

[Eag15] Eagle, M. et al. “Measuring Implicit Science Learning with Networks of Player-Game
Interactions”. Proceedings of the 2015 Annual Symposium on Computer-Human Inter-
action in Play. ACM. 2015, pp. 499–504.

[Ecla] Eclipse. http://www.eclipse.org.

[Ern03] Ernst, M. D. “Static and dynamic analysis: Synergy and duality”. WODA 2003: ICSE
Workshop on Dynamic Analysis. Citeseer. 2003, pp. 24–27.

110

http://www.eclipse.org

[Eva03] Evans, D. et al. “Progress on concept inventory assessment tools”. Frontiers in Educa-
tion, 2003. FIE 2003 33rd Annual. Vol. 1. IEEE. 2003, T4G–1.

[FI93] Fayyad, U. & Irani, K. “Multi-interval discretization of continuous-valued attributes for
classification learning” (1993).

[Fin] FindBugs Cloud Tutorial.https://code.google.com/p/findbugs/wiki/FindBugsCloudTutorial.
2011.

[For89] Forman, E. “The role of peer interaction in the social construction of mathematical
knowledge”. International Journal of Educational Research 13.1 (1989), pp. 55–70.

[Fou15] Foundation, E. ASTParser Documentation. http://help.eclipse.org/mars/
index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%
2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html. 2015.

[Fri10] Fritz, T. et al. “A degree-of-knowledge model to capture source code familiarity”. Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM. 2010, pp. 385–394.

[Fri14] Fritz, T. et al. “Developers’ code context models for change tasks”. Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM. 2014, pp. 7–18.

[Gas04] Gasson, S. “Rigor in grounded theory research: An interpretive perspective on gen-
erating theory from qualitative field studies”. The handbook of information systems
research (2004), pp. 79–102.

[Ge12] Ge, X. et al. “Reconciling manual and automatic refactoring”. Software Engineering
(ICSE), 2012 34th International Conference on. IEEE. 2012, pp. 211–221.

[GL03] Ge, X. & Land, S. M. “Scaffolding studentsâ problem-solving processes in an ill-structured
task using question prompts and peer interactions”. Educational Technology Research
and Development 51.1 (2003), pp. 21–38.

[GM05] Ghezzi, C. & Mandrioli, D. “The challenges of software engineering education”. Inter-
national Conference on Software Engineering. Springer. 2005, pp. 115–127.

[Glu07] Gluck, J. et al. “Impact of interruption style on end-user debugging”. Proc. CHI. 2007,
pp. 41–50.

[Gor98] Gordon, R. “Coding Interview Responses”. Basic Interviewing Skills. Waveland Pr Inc.,
1998, pp. 183–199.

[Gor97] Gorsuch, R. L. “Exploratory factor analysis: Its role in item analysis”. Journal of person-
ality assessment 68.3 (1997), pp. 532–560.

111

https://code.google.com/p/findbugs/wiki/FindBugsCloudTutorial
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTParser.html

[Gos96] Gosling, J. et al. The Java Language Specification. 1st. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1996.

[Got05] Goth, G. “Beware of the March of this IDE: Eclipse is overshadowing other tool tech-
nologies”. IEEE Software 22.4 (2005), pp. 108–111.

[HM11] Haapio, T. & Menzies, T. “Exploring the effort of general software project activities with
data mining”. International Journal of Software Engineering and Knowledge Engineer-
ing 21.05 (2011), pp. 725–753.

[Hal09] Hall, M. et al. “The WEKA Data Mining Software: An Update”. SIGKDD Explor. Newsl.
11.1 (2009), pp. 10–18.

[Hal99] Hall, M. A. “Correlation-based feature selection for machine learning”. PhD thesis. The
University of Waikato, 1999.

[HLL04] Hamou-Lhadj, A. & Lethbridge, T. C. “A survey of trace exploration tools and tech-
niques”. Proceedings of the 2004 conference of the Centre for Advanced Studies on
Collaborative research. IBM Press. 2004, pp. 42–55.

[Han07] Hannay, J. E. et al. “A systematic review of theory use in software engineering experi-
ments”. Software Engineering, IEEE Transactions on 33.2 (2007), pp. 87–107.

[Har10] Hartmann, B. et al. “What would other programmers do: suggesting solutions to error
messages”. Proceedings of the SIGCHI Conference on Human Factors in Computing.
2010, pp. 1019–1028.

[HW08] Heckman, S. & Williams, L. “On Establishing a Benchmark for Evaluating Static Analysis
Alert Prioritization and Classification Techniques”. Proc. ESEM. 2008, pp. 41–50.

[HW09] Heckman, S. & Williams, L. “A model building process for identifying actionable static
analysis alerts”. Software Testing Verification and Validation, 2009. ICST’09. Interna-
tional Conference on. IEEE. 2009, pp. 161–170.

[Hes92] Hestenes, D. et al. “Force concept inventory”. The physics teacher 30.3 (1992), pp. 141–
158.

[Hic14] Hicks, A. et al. “Building games to learn from their players: Generating hints in a serious
game”. Intelligent Tutoring Systems. Springer. 2014, pp. 312–317.

[HA05] Hove, S. & Anda, B. “Experiences from Conducting Semi-structured Interviews in Em-
pirical Software Engineering Research”. Proc. METRICS. 2005, pp. 1–10.

[Int] IntelliJ IDEA. http://www.jetbrains.com/idea/.

[JG97] Jazayeri, M. & GHEZZI, C. Programming language concepts. 1997.

112

http://www.jetbrains.com/idea/

[Eclb] JDT Core Component. http://www.eclipse.org/jdt/core/index.php. 2013.

[Jfr] JFreeChart. http://www.jfree.org/jfreechart/. 2013.

[Joh12] Johnson, B. “A Study on Improving Static Analysis Tools: Why are we not using them?”
Proc. ICSE, Student Research Competition. 2012.

[Joh13a] Johnson, B. et al. “Why don’t software developers use static analysis tools to find
bugs?” Software Engineering (ICSE), 2013 35th International Conference on. IEEE.
2013, pp. 672–681.

[Joh15] Johnson, B. et al. “Bespoke tools: adapted to the concepts developers know”. Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM.
2015, pp. 878–881.

[Joh16] Johnson, B. et al. “A cross-tool communication study on program analysis tool noti-
fications”. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM. 2016, pp. 73–84.

[Joh13b] Johnson, B. et al. “Why don’t software developers use static analysis tools to find
bugs?” Software Engineering (ICSE), 2013 35th International Conference on. IEEE.
2013, pp. 672–681.

[Joh78] Johnson, S. C. Lint, a C Program Checker. Tech. rep. Bell Laboratories, 1978.

[JL89] Johnson-Laird, P. N. “Mental models.” (1989).

[Jun] JUnit 4. http://www.junit.org.

[Kac10] Kaczmarczyk, L. C. et al. “Identifying student misconceptions of programming”. Pro-
ceedings of the 41st ACM technical symposium on Computer science education. ACM.
2010, pp. 107–111.

[KW14] Karpierz, K. & Wolfman, S. A. “Misconceptions and Concept Inventory Questions for
Binary Search Trees and Hash Tables”. Proceedings of the 45th ACM Technical Sympo-
sium on Computer Science Education. SIGCSE ’14. 2014, pp. 109–114.

[KH08] Khairuddin, N. N. & Hashim, K. “Application of Bloomâs taxonomy in software en-
gineering assessments”. Proceedings of the 8th WSEAS International Conference on
Applied Computer Science. 2008, pp. 21–3.

[Kho08] Khoo, Y. P. et al. “Path Projection for User-Centered Static Analysis Tools”. Proc. PASTE.
2008, pp. 57–63.

[Kot07] Kotsiantis, S. B. et al. Supervised machine learning: A review of classification techniques.
2007.

113

http://www.eclipse.org/jdt/core/index.php
http://www.jfree.org/jfreechart/
http://www.junit.org

[Kri00] Krishnan, M. S. et al. “An empirical analysis of productivity and quality in software
products”. Management science 46.6 (2000), pp. 745–759.

[Kro10] Krone, J. et al. “A reasoning concept inventory for computer science”. Clemson Univer-
sity (2010).

[Lar80] Larkin, J. et al. “Expert and novice performance in solving physics problems”. Science
208.4450 (1980), pp. 1335–1342.

[Law13] Lawrance, J. et al. “How programmers debug, revisited: An information foraging theory
perspective”. Software Engineering, IEEE Transactions on 39.2 (2013), pp. 197–215.

[Lay07] Layman, L. et al. “Toward Reducing Fault Fix Time: Understanding Developer Behavior
for the Design of Automated Fault Detection Tools”. Proc. ESEM. 2007, pp. 176–185.

[Lew82] Lewis, C. H. Using the “Thinking Aloud” Method In Cognitive Interface Design. Tech.
rep. RC-9265. IBM, 1982.

[Li04] Li, D. “Trustworthiness of think-aloud protocols in the study of translation processes”.
International Journal of Applied Linguistics 14.3 (2004), pp. 301–313.

[Log] log4j. http://logging.apache.org/log4j/.

[LS96] Lonczewski, F. & Schreiber, S. “The FUSE-System: an Integrated User Interface Design
Environment.” CADUI. Vol. 96. 1996, pp. 37–56.

[LC06] Lui, K. M. & Chan, K. C. “Pair programming productivity: Novice–novice vs. expert–
expert”. International Journal of Human-computer studies 64.9 (2006), pp. 915–925.

[Luk05] Luk, C.-K. et al. “Pin: building customized program analysis tools with dynamic instru-
mentation”. Acm sigplan notices. Vol. 40. 6. ACM. 2005, pp. 190–200.

[MC03] McCrickard, D. S. & Chewar, C. M. “Attuning notification design to user goals and
attention costs”. Communications of the ACM 46.3 (2003), pp. 67–72.

[McK81] McKeithen, K. B. et al. “Knowledge organization and skill differences in computer
programmers”. Cognitive Psychology 13.3 (1981), pp. 307–325.

[Men04] Menzies, T. et al. “Assessing predictors of software defects”. Proc. Workshop Predictive
Software Models. 2004.

[Men07] Menzies, T. et al. “Data mining static code attributes to learn defect predictors”. IEEE
transactions on software engineering 33.1 (2007).

[Met91] Mettrey, W. “A comparative evaluation of expert system tools”. Computer 24.2 (1991),
pp. 19–31.

114

http://logging.apache.org/log4j/

[ME98] Munson, J. C. & Elbaum, S. G. “Code churn: A measure for estimating the impact of
code change”. Software Maintenance, 1998. Proceedings., International Conference
on. IEEE. 1998, pp. 24–31.

[MHB10a] Murphy-Hill, E. & Black, A. “An interactive ambient visualization for code smells”.
Proceedings of International Symposium on Software Visualization. 2010, pp. 5–14.

[MHB08] Murphy-Hill, E. & Black, A. P. “Refactoring Tools: Fitness for Purpose”. IEEE Softw. 25.5
(2008), pp. 38–44.

[MHB10b] Murphy-Hill, E. & Black, A. P. “An Interactive Ambient Visualization for Code Smells”.
Proc. SoftVis. 2010, pp. 5–14.

[MHM11] Murphy-Hill, E. & Murphy, G. C. “Peer interaction effectively, yet infrequently, enables
programmers to discover new tools”. Proceedings of the ACM 2011 conference on
Computer supported cooperative work. ACM. 2011, pp. 405–414.

[MHM14] Murphy-Hill, E. & Murphy, G. C. “Recommendation delivery”. Recommendation Sys-
tems in Software Engineering. Springer, 2014, pp. 223–242.

[Mur99a] Murray, T. “Authoring intelligent tutoring systems: An analysis of the state of the art”.
International Journal of Artificial Intelligence in Education (IJAIED) 10 (1999), pp. 98–
129.

[Mur99b] Murray, T. “Authoring intelligent tutoring systems: An analysis of the state of the art”.
International Journal of Artificial Intelligence in Education (IJAIED) 10 (1999), pp. 98–
129.

[Muş12a] Muşlu, K. et al. “Improving IDE recommendations by considering global implications
of existing recommendations”. Proceedings of the 34th International Conference on
Software Engineering. IEEE Press. 2012, pp. 1349–1352.

[Muş12b] Muşlu, K. et al. “Speculative analysis of integrated development environment recom-
mendations”. ACM SIGPLAN Notices 47.10 (2012), pp. 669–682.

[Muş14] Muşlu, K. et al. “Transition from Centralized to Distributed Version Control Systems:
A Case Study on Reasons, Barriers, and Outcomes”. Proceedings of the International
Conference on Software Engineering. 2014.

[Mus08] Mustajoki, A. et al. “Modelling of (mis) communication”. Prikladna lingvistika ta ligvis-
titshni tehnologii: Megaling-2007 35 (2008).

[NB05] Nagappan, N. & Ball, T. “Use of relative code churn measures to predict system de-
fect density”. Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on. IEEE. 2005, pp. 284–292.

115

[Nas12] Nasehi, S. M. et al. “What makes a good code example?: A study of programming
Q&A in StackOverflow”. Software Maintenance (ICSM), 2012 28th IEEE International
Conference on. 2012, pp. 25–34.

[NEL67] NELSON, C. H. “TESTING AND EVALUATION IN THE BIOLOGICAL SCIENCES.” (1967).

[Nie15] Nielson, F. et al. Principles of program analysis. Springer, 2015.

[Nie08] Nienaltowski, M. et al. “Compiler Error Messages: What Can Help Novices?” Proceedings
of SIGCSE Technical Symposium on Computer Science Education. 2008, pp. 168–172.

[ON92] Oberg, B. & Notkin, D. “Error reporting with graduated color”. IEEE Softw. 9.6 (1992),
pp. 33–38.

[O’N15] O’Neil, F. “Target data breach: applying user-centered design principles to data breach
notifications”. Proceedings of the 33rd Annual International Conference on the Design
of Communication. ACM. 2015, p. 47.

[OL07] Onwuegbuzie, A. J. & Leech, N. L. “Validity and qualitative research: An oxymoron?”
Quality & Quantity 41.2 (2007), pp. 233–249.

[Ope] OpenJDK Source Releases. http://download.java.net/openjdk/jdk8/.

[Pac03] Pacione, M. J. et al. “A comparative evaluation of dynamic visualisation tools”. null.
IEEE. 2003, p. 80.

[Par16] Parker, M. C. et al. “Replication, Validation, and Use of a Language Independent CS1
Knowledge Assessment”. Proceedings of the 2016 ACM Conference on International
Computing Education Research. ACM. 2016, pp. 93–101.

[Pel01] Pellegrino, J. W. et al. Knowing what students know: The science and design of educa-
tional assessment. National Academies Press, 2001.

[Per12] Perscheid, M. et al. “Test-driven fault navigation for debugging reproducible failures”.
Information and Media Technologies 7.4 (2012), pp. 1377–1400.

[Pet17] Pettit, R. S. et al. “Do Enhanced Compiler Error Messages Help Students?: Results In-
conclusive.” Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. ACM. 2017, pp. 465–470.

[Pha15] Pham, R. et al. “Automatically recommending test code examples to inexperienced
developers”. Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM. 2015, pp. 890–893.

[PC99] Pirolli, P. & Card, S. “Information foraging.” Psychological review 106.4 (1999), p. 643.

116

http://download.java.net/openjdk/jdk8/

[Plo15] Plonka, L. et al. “Knowledge transfer in pair programming: An in-depth analysis”.
International journal of human-computer studies 73 (2015), pp. 66–78.

[Pmd] PMD. http://pmd.sourceforge.net/.

[R C13] R Core Team. R: A Language and Environment for Statistical Computing. ISBN 3-900051-
07-0. R Foundation for Statistical Computing. Vienna, Austria, 2013.

[Raj95] Raju, P. S. et al. “Differential effects of subjective knowledge, objective knowledge,
and usage experience on decision making: An exploratory investigation”. Journal of
consumer psychology 4.2 (1995), pp. 153–180.

[RH01] Riemenschneider, C. K. & Hardgrave, B. C. “Explaining software development tool use
with the technology acceptance model”. The Journal of Computer Information Systems
41.4 (2001), p. 1.

[RT05] Rigby, P. & Thompson, S. “Study of Novice Programmers using Eclipse and Gild”. Pro-
ceedings of OOPSLA Workshop on Eclipse Technology eXchange. 2005, pp. 105–109.

[Rob04] Robertson, T. et al. “Impact of interruption style on end-user debugging”. Proc. CHI.
2004, pp. 287–294.

[Rob14] Robillard, M. P. et al. Recommendation systems in software engineering. Springer, 2014.

[Roy09] Roy, C. K. et al. “Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach”. Science of Computer Programming 74.7 (2009), pp. 470–
495.

[Sch96] Schlungbaum, E. “Model-based user interface software tools-current state of declara-
tive models” (1996).

[Sco03] Scott, T. “Bloom’s taxonomy applied to testing in computer science classes”. Journal of
Computing Sciences in Colleges 19.1 (2003), pp. 267–274.

[She11] Shen, H. et al. “EFindBugs: Effective Error Ranking for FindBugs”. Proc. ICST. 2011,
pp. 299–308.

[Shi11] Shin, Y. et al. “Evaluating complexity, code churn, and developer activity metrics as
indicators of software vulnerabilities”. IEEE Transactions on Software Engineering 37.6
(2011), pp. 772–787.

[Smi15] Smith, J. et al. “Questions developers ask while diagnosing potential security vulnera-
bilities with static analysis”. Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM. 2015, pp. 248–259.

[Sow05] Sow, D. et al. “SCOUT contextually organizes user tasks”. e-Business Engineering, 2005.
ICEBE 2005. IEEE International Conference on. 2005, pp. 94 –101.

117

http://pmd.sourceforge.net/

[Spi05] Spinuzzi, C. “The Methodology of Participatory Design”. Technical Commun. 52.2
(2005), pp. 163–174.

[SB09] Stamper, J. & Barnes, T. “Unsupervised MDP Value Selection for Automating ITS Capa-
bilities.” International Working Group on Educational Data Mining (2009).

[Sta08] Starr, C. W. et al. “Bloom’s taxonomy revisited: specifying assessable learning objectives
in computer science”. ACM SIGCSE Bulletin 40.1 (2008), pp. 261–265.

[Sto97] Storey, M.-A. D. et al. “Rigi: a visualization environment for reverse engineering”. Pro-
ceedings of the 19th international conference on Software engineering. ACM. 1997,
pp. 606–607.

[Sty09] Stylos, J. et al. “Improving API documentation using API usage information”. Visual
Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE Symposium on.
IEEE. 2009, pp. 119–126.

[Tew10] Tew, A. E. “Assessing fundamental introductory computing concept knowledge in a
language independent manner” (2010).

[TG10] Tew, A. E. & Guzdial, M. “Developing a validated assessment of fundamental CS1
concepts”. Proceedings of the 41st ACM technical symposium on Computer science
education. ACM. 2010, pp. 97–101.

[Ayea] “The Google FindBugs Fixit”. Proc. ISSTA. 2010, pp. 241–252.

[Tho08] Thompson, E. et al. “Bloom’s taxonomy for CS assessment”. Proceedings of the tenth
conference on Australasian computing education-Volume 78. Australian Computer
Society, Inc. 2008, pp. 155–161.

[Thr] Threats to Construct Validity. http://www.socialresearchmethods.net/kb/
consthre.php.

[Tra10] Traver, V. J. “On Compiler Error Messages: What They Say and What They Mean”.
Advances in Human-Computer Interaction (2010).

[Ayeb] “Using checklists to review static analysis warnings”. Proc. DEFECTS. 2009, pp. 11–15.

[VRH04] Van-Roy, P. & Haridi, S. Concepts, techniques, and models of computer programming.
MIT press, 2004.

[Wag08] Wagner, S. et al. “An evaluation of two bug pattern tools for java”. Software Testing,
Verification, and Validation, 2008 1st International Conference on. IEEE. 2008, pp. 248–
257.

118

http://www.socialresearchmethods.net/kb/consthre.php
http://www.socialresearchmethods.net/kb/consthre.php

[Wie93] Wiedenbeck, S. et al. “Characteristics of the mental representations of novice and expert
programmers: an empirical study”. International Journal of Man-Machine Studies 39.5
(1993), pp. 793–812.

[Wie85] Wiedenbeck, S. “Novice/expert differences in programming skills”. International Jour-
nal of Man-Machine Studies 23.4 (1985), pp. 383–390.

[Wit99] Witten, I. H. et al. “Weka: Practical machine learning tools and techniques with Java
implementations” (1999).

[WR99] Wohlin, C. & Regnell, B. “Achieving industrial relevance in software engineering educa-
tion”. Software Engineering Education and Training, 1999. Proceedings. 12th Confer-
ence on. IEEE. 1999, pp. 16–25.

[WM97] Wolpert, D. H. & Macready, W. G. “No free lunch theorems for optimization”. IEEE
transactions on evolutionary computation 1.1 (1997), pp. 67–82.

[Xia14] Xiao, S. et al. “Social influences on secure development tool adoption: why security tools
spread”. Proceedings of the 17th ACM conference on Computer supported cooperative
work & social computing. ACM. 2014, pp. 1095–1106.

[Zha05a] Zhang, L. et al. “Info-lotus: a peripheral visualization for email notification”. CHI ’05
extended abstracts on Human factors in computing systems. CHI EA ’05. Portland, OR,
USA: ACM, 2005, pp. 1901–1904.

[Zha05b] Zhang, S. et al. “" Missing is useful": missing values in cost-sensitive decision trees”.
IEEE transactions on knowledge and data engineering 17.12 (2005), pp. 1689–1693.

[Zhe06] Zheng, J. et al. “On the value of static analysis for fault detection in software”. Software
Engineering, IEEE Transactions on 32.4 (2006), pp. 240–253.

[Zin10] Zingaro, D. “Experience report: Peer instruction in remedial computer science”. Pro-
ceedings of the 22nd World Conference on Educational Multimedia, Hypermedia &
Telecommunications. 2010, pp. 5030–5035.

[Zou08] Zou, Y. et al. “Adapting the User Interface of Integrated Development Environments
(IDEs) for Novice Users.” Journal of Object Technology 7.7 (2008), pp. 55–74.

119

APPENDICES

120

APPENDIX

A

CHAPTER 3 ARTIFACTS

A.1 Pre-Interview Questionnaire

121

Research	 Study	 Pre-‐Interview	 Questionnaire	
	

1. Which	 of	 the	 following	 open-‐source	 tools	 have	 you	 used	 to	 perform	 static	
analysis?	 (from	
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis)	
	
___	 Copy/Paste	 Detector	 (CPD)	
___	 FxCop	
___	 StyleCop	
___	 Antic	
___	 Astrée	
___	 BLAST	
___	 Clang	
___	 Frama-‐C	
___	 Lint	
___	 Splint	
___	 cppcheck	
___	 cpplint	
___	 Checkstyle	
___	 FindBugs	
___	 PMD	
___	 Soot	
___	 JSLint	
___	 JSHint	
___	 CSS	 Lint	
___	 Other:	 _____________________________	
	

2. Which	 of	 the	 closed-‐source	 tools	 have	 you	 used	 to	 perform	 static	 analysis?	
(from	 http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis)	
	
___	 Axivion	 Bauhaus	 Suite	
___	 Black	 Duck	 Suite	
___	 BugScout	
___	 Checkmarx	
___	 Coverity	
___	 DevPartner	 Code	 Review	
___	 DMS	 Software	 Reengineering	 Toolkit	
___	 Compuware	 DevEnterprise	
___	 GrammaTech	 CodeSonar	
___	 Intel	 Parallel	 Studio	 XE	
___	 JustCode	
___	 Klocwork	 Insight	
___	 LDRA	 Testbed	
___	 MALPAS	
___	 Parasoft	
___	 Polyspace	

122

___	 ProjectCodeMeter	
___	 Rational	 Software	 Analyzer	
___	 Understand	
___	 Veracode	
___	 Visual	 Studio	 Team	 System	
___	 CodeIt.Right	
___	 CodeRush	
___	 NDepend	
___	 FlexeLint	
___	 Green	 Hills	 Software	 DoubleCheck	
___	 PC-‐Lint	
___	 JTest	
___	 SonarJ	
___	 ESC/Java	 or	 ESC/Java2	
___	 SofCheck	 Inspector	
___SPARK	 Toolset	
___	 Other:	 _____________________________	

3. Have	 you	 ever	 worked	 on	 a	 software	 development	 team?	
	
___	 Yes	
___	 No	

4. Do	 you	 currently	 work	 on	 a	 software	 development	 team?	
	
___	 Yes	
___	 No	

5. Have	 you	 ever	 had	 to	 use	 a	 static	 analysis	 tool	 while	 on	 a	 software	
development	 team?	
	
___	 Yes	
___	 No	

6. What	 tool	 will	 you	 be	 using	 for	 in	 the	 interview?	 (Required)	
__	

123

A.2 Interview Script

124

Hello. My name is Brittany and this is Yoonki. We are currently doing research on how to
improve the usability of static analysis tools. As a part of our research, we are conducting a
series of interviews to get feedback from programmers, developers and static analysis tool
users. Thank you for taking time out of your schedule to let us interview you.

During the course of this interview, we may ask you especially provocative questions, such as
suggesting what you’ve told us is inconsistent with (quote-unquote) “best practice.” We do not
mean to to insult or offend you, but instead to try to make you think deeply about why you do
what you do. Try not to take anything personal and answer as best you can; there are no right
answers.

Questions and Short Responses

For the first part of the interview, we’re going to ask you some questions about your experience
using static analysis tools. For now, we would like to focus on your own personal experience
and opinions as a developer. Later in the interview, you will get the chance to be creative and
suggest improvements for static analysis tools. We are dedicating 20 minutes to this section so
try and keep your answers short, sweet and to the point.

Experience Questions

- Can you tell me about your first experience with static analysis?

- How easy/difficult was your first experience? Can you remember what made you feel that
way?

- Do you have experience working on a software team? Did they use static analysis tools?

→ if yes, did you find it useful? (In your opinion did the tool accommodate
teamwork(communicating standards/rule sets to be used)?)

→ if no, do you think a team could benefit from using static analysis tools during
development?

125

- When you first started working at Google, was static analysis a part of the development
process?

 → Did you have any difficulties or frustrations with using the static analysis tools
provided?

→ Did the process/tools used make it clear what kind of bugs are a priority for Google?
If not, how did you come to understand what you should and shouldn’t be looking for?

Usage Questions

- When was the last time you used a static analysis tool?

- Have you used any other tools besides the ones you’ve already mentioned (name them)?

- Do you have a specific role as a developer (if so, what is it?)?

→ Do you feel the tool(s) used benefit what you do as a developer?

- Do you use your own static analysis or style checking tool (outside of the Google process)?

→ What is your tool of choice? Why do you prefer this tool?

→ Is there anything about this tool that you don’t like, or find difficult?

- Do you use a static analysis tool for all the software you write? If not, why do you use it for
some and not others?

126

- Are there any aspects of using static analysis tools that you describe as painful or difficult?

- Have you ever consciously avoided using static analysis? (Example?) Why do you think you
avoided using it?

- Do you use/prefer static analysis tools that (a) run continuously in your IDE, (b) run in your IDE
when you tell them to run, (c) as a part of your build process or (d) other?

Other Questions

- What type of bugs do you feel are, or should be, the priority at Google? (Feel free to specify
both if you feel the type that are priority shouldn’t be)

→ Do you feel the tools being used are finding these types of warnings?

- How did you find out about the static analysis tool you use?

- Do you use any other methods of debugging/finding errors in your code? If so, why do you
prefer your method to using a static analysis tool?

- Some have suggested that static analysis tools should find bugs as early as possible in the
development cycle. What would you define as ‘earliest’? (When would you like for a static
analysis tool to notify you of bugs in your code?)

127

- What, in your opinion, are the critical characteristics of a good static analysis tool?

- Can you describe the process involving static analysis that code undergoes here at Google?

- What are your goals when using static analysis?

→ Do you feel the tools you use now fulfill these?

→ If not, what’s missing?
Interactive Interview (current workflow)

During this portion of the interview we would like to see you in action. We have dedicated 20
minutes to this section as well. (** Maybe see if they can use tool on real code and fix a real
defect**)

If the subject has agreed to use their own code/tool:
Can you go ahead and pull up some code? As you’re doing this we’re going to ask you to do
some things and ask some questions pertaining to how you do things.

If subject did not want to use their own code:
Here is the code we told you we would bring...would you mind running the tool on the code?
While you do this we are going to ask you some questions.

Feel free to explain what you’re doing out loud so we can get a better understanding of your
workflow/thought process.

- Do the tools you use undergo any sort of evaluation before or after integration into your
process? What about the tools Google uses?

128

→ Does your methods in any way reflect what you have to do in the Google process?

- Now that you’ve run the tool and gotten your feedback, what would your next move(s)? (Do
you look at all the warnings? some, but not others? Fix all?)

- Do you configure the settings of your tool from default settings? (if so, show me)

→ About how much configuring would you say you have to do before you’re satisfied?

- Does your static analysis tool or process help in assessing what to do about a warning?

→ On average, how long would you say it takes you to figure out what to do about the
warnings reported from your static analysis tool(s)?

→ FindBugs is in the process of adding Quick Fixes to their tool. Do you feel this would
be helpful? What about partial quick fixes? What kind of solutions would you be looking for?

- What would you consider an overwhelming number of warnings?

→ Have you ever had an overwhelming number of warnings come up? (If so, how did
you react?)

129

- Are there any guidelines or methods in place for keeping track of warnings that are new versus
warnings that are old but still showing up? Does your process report when bugs are fixed?

→ If not, would this sort of mechanism be beneficial?

Do you feel like you need a break before we begin the last portion of the interview?
(If yes, take 5 minute intermission)
Participatory Design (desired workflow)

Now that we’ve got you in the mindset of programming using static analysis, we would like to
allow you to be creative through a design exercise. We are going to give you a blank sheet of
paper and we would like for you to describe to us your ideal workflow using a static analysis tool
and draw a simple sketch of how you want to interact with the tool.

Again, we would like to thank you for your time. Do you have any questions for us?
(If no) Do you mind if we keep your drawing for further analysis?

130

A.3 Participatory Design Sketches

131

.")
(....

i
U

\

il
ta

,-,'

I

i

I

j

I

('"

)

f
b

{!

132

" \,^,t^ou Ai{$-

J;" 'l'u-
@{tir [a'{:Q^r .,91'-"[

:
+ SrC-'t

't-

ta.J.)*vn
@@ s{

1' hbn L3Ll,*x, "{-
(^1- *+)

^[c"Ae' i^wl*ed trua'

4Le wcz''\

.{.', q*& fir

S.-,*s lT"S {

v

''."-#-rr*

14L"

I

:

I
I

-l_

133

i

t ---'--i t ----\' l--l, l_--_.;t

.--

134

-:\

@

c
fl

{)
\
',U

1{
:3

S

H

t
!

!)
7-

G-

135

,'^\
/\/\tl\t\,t\/

*_-".

I

g
o
-
tr(l

fili

Ll*
ln*=
:J;
'"1.. I

:."

nl
f
'lJErdt
r{.

s!
l!

F
,t;li,i
il5r

CJ
J
o
U

ig'r

,!:

I
U

E
u-
cff -nCr

'- l.-il)
+{tv] -

=
-' 0./ : (,,

i, U
Ui-Y?r!U
-L.-t++--EV,.] #PE;
n+ s b-il il b
HEqF$ETT
fidi;E-'*.o:R rrj
F-*.'!lrJ[f:u'or,X!qranLJd
t:uU!*rr
UEIQL'UilUU+nQU!!!!9J!#llll

{m€s,[]G,$*]m

: .::ji:=:.:::;: :: i:::::];:::ji::" :: ;:;:::::::::-::::::

;"

t1 i:, nJ rt ri b Ic|]..iilnlt'lq(J,Ol'ltr*!:r:
rr tt () () r.i 't rr F{J {r .. o ,11 tl}
uTtli.(lrlrt^f,i
rlrunij,fl J+:r_t
0 J'l O Jl 0J :r tU rU

''l tJ 'l lr ti tn !')
.|J ilJ U rli ti Lr nJ nJ

u rlr, lJ E o ,r p +J
0J nJ [J .' Ll ..t nJ fJ
r: ' E :r rU [r A C]
l1 u' d $ rr D.t
O

'l
0 l{ d 'l UJ H

Ul u U [r Jl : cn],iluruTldi.lLr
tr')-Jl"urJflJ
fi [r 'rJ Ll flJ 'lJ [.J r-.1

JlEir'lto.i: nllkf,l U TJ ri nlr'Erl.i-'g +rF IililL]trl]j,rf,J{ul
l.:l .Q 'l i,-1 lr l-1 5 It-{ qr p .r t..t I I

' u F1 ., 6 I"fifirul,r(1[rIt
'Drtlt"lfi"rljtriI+r nl r1 {r (' .u t.r l! lU,l o llj rr.() rD 1 'llJ l"J Lt il rrl rlj la I

=4J "lJ I ,;.:

orol-.
!"rt"lls. p. lltt

l--*i
\'i,

t

f.. lll ilr i
'

, I ,i,l !x1 aill hl ra ;:- al
tlj 1.! l1t f1 r I tr I lr:1 |llJ F I f: ti lrj

ffi
&
{#
ti {l

;

l

;3
i.

*

ttr
t
.".

..'j'

:::::i:

i'F

il!

l
n;ry

*
&

1t3

l

sr
I

gq

I

U:
6:
i:1',-
l!

2

i'F-l -

I I I ,,tiNi
I i-l ' .iill Ll

I ljdr i T
I lol I L

ti;q]'att .!
'..,,I,P lr ,t !: ,d i , i I il

,)@ .: ! o
:,:-lu{lJi+i-4i :Y=S E#Itl r* ;;A F?l
.:l .,S 4 .: q E= o

=
'-:il c F ".9^!g.t

u:lU.:rr-':-4,(UL^
j,'-':iEouq-oEc
iru:u:cLlEu=E

"ir
gJEqES€

I :6 -E u c tsI qiis-sgE$-Eg
!-lCXuN L:- " 1 { {

l' $ Ldo' sme0
,.9
I E €,""sto i

tnE I
!,---",-,..,'-,

inT --"- -in lui ilr
,u i

-
ra r. t-i i:,I ; 'u rj c| ,:. .i
I'tC(J,Ol'l

'^q l) iJ {J {l^ -l di u rt ttI U '\ rl. .
1 d ri n. r: 'u fiI I c) o ',J 0r1 o

Tt f:l d .,:; .,t 'J ,tjC'-{,lF,,.'.|J(JIJ
4 lr 13 u . u U,tJ

I L*: .. 0l i '1.r ,lJ 0J nJ [J
: ul lJ rl u rt 'n ri E
J :r nr ru tr t: t: Lr' **..tUXO}loltc)

s, nl fl' tD U .Ll t) U U'='ltflr,lur()
*[, rU lJ C '] lr']-Ll

iirlrrtr)(]r:fiUd
l. rU ru .t $tlr'I {J 't_l l.{ t"J '1. f,j .qt

I -s, ,.t tl-{ :! O .'.: Lt k f-l14' (]J :t ti {-l I' rr1 il L]
rrul* rn ru Fi l).S 'r;FI nJ . :'r fj 1 r-..r qr |J
I-XC'O.otl U
,llur{Ui?firul.oi'Drfit'1
lHdtru!.,+rnjrl'. O l1 rU .F) *t U,l O
: .v! u d r.l rd r.) 4J () Ll
l;-l .r1 A F 4J

-{Jd,O;htrut,t[,iE td l' 'q n --S.
l.r- ;l o rq
th lt A. fr3T E"E
]'h 0. 'd P,
lil + r

] f, r ;, i. r 'l ,, ! rr 'r 'l
13 rr i{ ,l t . t., ,{ ..1

A-.*l\.I ;,:
lijjtill1\ltlitlil il

IIIIii iiir !i/!rlilli
!lllilli\i i\

ns

U
F

L-r.*iil r\L/
-St

t*-,l
.5"
{} ,Q

!t
l--
':* g
;)

"{

:1.{
.'--
*-{tlr

T4-+.(\I -",1

1>.J

(J

E

t,i
il

=
Eu
tr

in

U
ru

e
€?

c
(t

f lililtllilt ll[F]t";':l;i

,-- u
:it
,rf L
--c

!,:udJu'dE x
l- \L -!1
.>u
il*tcr
.t

"l?
rilu ci ,...1

IJ\

F

.:s

..11.
,il,!l

tl.l"l

---Tni
ui

!

-...)'ul
F)

'T1
E iI

0l
,.1
*rl

i.j
XU
rUgl
E

rS
d

e, :::::
tr1.

136

^?\Jq,
L(_
$
€4
a
tD

\)

,J

U
-<<.

"+.
LJ

137

138

l

.

-; =--::
Il-r\ \r "ar 1 !

"
'',.1'i.^u "rifi'

- |r'of, LaLl-,*g, of (^1* "t+)'{ \

^[coAq i"'wtnted t:ta'

I iLe w'c'n\
J

i, ",. dF -{.'r q* "L
fir

s.;lly"",P-7-+"-

y" n{L_

Joo.i*
t"t*

a_ ta"{fe^, ttrA
{ €r(-
Y
.t

t.,.J . l*vr'
@@ sq

'+-

139

".,")(....

c'

itlq
1

\. I .'

tj

j

..i

ii
ri

i

rlj

t-**--
I

j

:

:

:

I

('^

)

f

b

*i
{

(r.

t

140

rqc-soL.1Co^*&

'\--.' 4-/4- 3 u9 2 <5L

I2nr.*, hrg
LY

l+,21 t,gL? 2€t*,# <Ju

+ L\ks + h-o-+ /._g.
e du c o-t Jor^() ur'.rLn .-

t \ t, .J-1, *-^ri '

tc-c.-t* L*u,<- /- *.(q ^'r, ."-L
)

/utro.-a ae-4*-

le 1-&n-

5- o!(' i" eo-h- <-

141

,",1-ri\1\t\{l\/\l\l-\/ \-/
\-.--l

l-1tiJ.F
t-*-

"l
5{;);

'a- I*J\>*
-.(

_\ ,+-
,.i)
\-*

:]

<*Tc
J'*<
t\ .)v(
T-- '>
-{-q \i :{-

.\>

;
j

d3

in
dl

=D
LL

E

B

i,4

LTJ

m

i-{'.\y ;lr
\,,,'i'
\,/

\

--\\.---'a*

,--ttt*

s.c

Li
tr

tm
...#i

Eg
E

!u
iq-,itritl
ilr

jm
:

; ..':
: t-ll

:ii

l€,
f,

'lJ;
to
t-Lr
:: li.*.1
lv

l€lF

ig
im

j
p

lilu
tF;,

!1:

'r"l
lq

il

rJ
{l
in
ilJ
Lr
fiJ
H
r"l
i:
+J
rJ
nt
t&

u

k
n

.1..1

H

.l.l

t)
un
iUp
'UH
lJ
U
tlt
.tJ
[Jn
ilJ
tl
i1J

fi
t.,t

rll
.tJ
U
qJ

"l-)f,

&

rl
ri
'r l
rrl
tl
tl
I'

llr

,rt

'+i

rl

.J
.f.'
.t"l

rl
Ii
,1

4..1

,1
n
{lli

{a

!:
t

:l

(.
't"

s
C

t-
L
0
t
$
C

t_
fl
g
11:

!(
T
n
ll
Fl
4
l;

l;
I
fr
,t.

{t

ln l'' I

1r I ", :rr
llt.I r- -. rt$

t+l I l'r i g
L*r ' i^ a LL

l,v,r
fot .'i E'

i3 f ; fi;' i ' ,/', ',:: 1'', r

;-.1 ,/et : ,: _ ollllllr!:adJl----nI idi ::rE E# ":
.'l . | -

E :-*T.ql 'ti * 't HE b * , *'J .;i e '6 '. .L;r+ -rJ
q' :U.= t I Y., ,,u q

-,-l5r, .?E E LE E.F-j=,l'l :{J
=

;lm l*f,-EE€st.=r^38,
{ E -a d EEd g E g E

n li f +g i .1 { {uF;,r......,Otrme|1,juu.=\J"
I .=

I .H ill ," FFtl id :'" \r
l-1. ir;r i- I,En I

,il,f,n;*' r,i I
,' i

- " "- - lt ,lr !l i.' nt
': I 0l rl Cr i.r',,1 0l

itmrlU,Qt.lH
I 1.": ilJ ,-r +r ,r A (l

14'; l) 'J [J 'lll:'..i d urrJ il J]' r I U '\ U 1l, rrj ri 0't fl [r ri h':il|J1jo,r:oJl
? I :-,1 'r .li '-l r.r 'r I l'l

. I E, '. Ul [J iJ lJ 'U r-r rU

I 5, tr Q o ,.r u U u E
I La,.\ ru i; ru il U (1 llj ., (

I I ul i rt 'rJ U tl 'fl r'l r': :\
i f,i o 'rJ rr Il fr L,' r-i.q.{rllXU>0ll0f{'p.;trrrri0u.J(Juu'l/

r"r!..rlt;uTl
- * {J ilJ rt ti rl rr -Jl .'

i u, H D u r', nJ {rTJ Lr
I [] rl-r ',t J} H r, $ f{,, H I*r r.J L f,J rJ tl'.,. I E ,.t rr.{ :! u .,.: pt lj t'l .,,

41 O ;l fr {J r, 'rr li o E

...t I Fi rrl U fi r.l .$ ri
lFl nJ i1 t'l D. tt ql Ut
-l

H c' G o ri .u
J'0J'tU'rEmd-r',:,' : ' t/t nJ {J rn {-i

' , H (l Ut rlj r1 +r nJ llol>d+)-iorrn.r'l'r i -' U r{ ,"1 fi (J |l) r,J tJf:J..^, .r1 U F {J
*-0a'o
ff::b{ruhrr,r .F ff ld 'r prj ;- ;,i O ""'tlutrinAtu : i" li)rr_ugtil

l>.tJlda
i'filq + ,* l:. r,..'. r,!,,
,. I\J r! i{,t r! . , ,,i ir,,,itl l,;t':r.l'-:--::::_': :': :" *
'lalr*din !-irot ;- : 'JP I

' i.*l I

lre lEi"'nit'd lii" j

I Cn! -l lji rl
u,.. o- . :-,:' .n

13. 1,'.r i ;; u
' lcP?i I ,r *

I ' ,.s,r ,q.l lu'-uI ,r_.r U uJ5 .'d4 x': ::1 -$ld ttr b
- lur lHt{r:

fi ;^ il; 'lt
i I ru @+.r-'J) . v i."to ti.

+ 1 j L 'mo
[,]** t

&'-fi:
I:
;!:oi
f:
*r

f

sg
iU

4.:

F.

u:ilj
aJl r

I

'u
E
fi1'5i
{q
7

E
E
u:

{Jgl
:f,1
Eqfi

t!:
:

ill :

IJ
't"1

ri
o
,r'l
+J
U
[i
ri
o
U
OJ
q]
rU

.r1
rd
l.l
lij
LI

[i
rl

lr
n

"1.1

{.}
l"r

,i
rl I

Hllf riii:il ii.lli:*iiiri{f ii

t,
/11lrillilil
It ii\itll\l \

fn
d

142

A.4 Coding Categories with Examples

143

Tool	 Output	
	
Jake	
…like	 I	 mentioned	 with	 FlexLint	 it	 gives	 you	 so	 many	 warnings	 and	 sifting	 through	
them	 is	 so…	 arduous	 that	 whenever	 I	 just	 look	 at	 it	 I’m	 like	 ehhh	 forget	 this.	
	
User	 Input	 and	 Customizability	
	
Andy	
Like	 you	 know	 it’s	 like	 is	 this	 list	 prioritized	 by	 you	 know	 what’s	 important	 to	 me?	
No.	 You	 know?	 And	 there	 may	 be	 a	 default	 listing	 that	 should	 be	 prioritized	 because	
like	 this	 one’s	 inefficient	
	
Supporting	 Teamwork	
	
John	
The	 only	 reason	 I	 like	 the	 batch	 results	 is	 to	 communicate,	 broadcast	 to	 the	 team	 a	
sense	 of	 progress	 or	 lack	 of	 progress.	
	
Result	 Understandability	
	
Matt	
so	 I	 click	 in	 there	 I	 think	 and	 it	 gives	 me	 a	 light	 bulb	 and	 it	 says	 ok	 so	 now	 I	 wanna	
know	 why	 raising	 a	 string	 exception	 is	 bad.	 Like	 what	 should	 I	 be	 doing	 instead?	
Since	 it	 thinks	 it’s	 a	 problem.	 And	 so	 none	 of	 these	 really	 help	 me.	
	
Workflows	
	
Mike	
Clang	 is	 my	 favorite.	 It’s	 built	 in	 ,	 into	 the	 compiler.	 You	 don’t	 have	 to	 invoke	
anything	 special	
	
Tool	 Design	
	
Chris	
I	 don’t	 mind	 the	 idea	 of	 the	 actual	 source	 code	 itself	 having	 some	 plasticity	 to	 it	 so	
that	 let’s	 say	 the	 fourth	 line	 there	 was	 some	 error	 here…having	 the	 5th	 line	 drop	
down	 and	 having	 the	 content	 expand	 with	 maybe	 all	 sorts	 of	 annotations	 about	 my	
code.	

144

APPENDIX

B

CHAPTER 4 ARTIFACTS

B.1 Notification Oracle

145

Categories:
Pointers/References
Multithreading
Null/Pointers/References
Dead Code
Generics
Inheritance/Polymorphism
Serialization
Test Coverage

Notification 1 (string comparison using == or !=):

This code compares java.lang.String objects for reference equality using the == or
!= operators. Unless both strings are either constants in a source file, or have been
interned using the String.intern() method, the same string value may be
represented by two different String objects. Consider using the equals(Object)
method instead.

You shouldn’t compare strings using == or != because it is only comparing the reference
not the actual string itself. Comparing strings is done using the .equals() method.

Notification 2 (incorrect lazy initialization):

This method contains an unsynchronized lazy initialization of a static field. After
the field is set, the object stored into that location is further updated or accessed.
The setting of the field is visible to other threads as soon as it is set. If the futher
accesses in the method that set the field serve to initialize the object, then you

146

have a very serious multithreading bug, unless something else prevents any other
thread from accessing the stored object until it is fully initialized.

Even if you feel confident that the method is never called by multiple threads, it
might be better to not set the static field until the value you are setting it to is fully
populated/initialized.

You are initializing a static variable without a synchronizing it, which if you trying to do lazy
initialization is incorrect as the way the code is written now more than one of these objects
can be created.

Notification 3 (Synchronize on a mutable field):

This method synchronizes on an object referenced from a mutable field. This is
unlikely to have useful semantics, since different threads may be synchronizing
on different objects.

It is possible for more than one of these objects to have been created or changed before it
is actually synchronized on so there is no telling what it is in fact being synchronized.

Notification 4 (Redundant null check):

A value is checked here to see whether it is null, but this value can't be null

147

because it was previously dereferenced and if it were null a null pointer exception
would have occurred at the earlier dereference. Essentially, this code and the
previous dereference disagree as to whether this value is allowed to be null. Either
the check is redundant or the previous dereference is erroneous.

The null check you are doing is not needed or misplaced. If e was null the code would
break before reaching the null check. You should consider removing the null check and
handing potential exception when e is dereferenced

Notification 5 (Possible null pointer dereference):

The return value from a method is dereferenced without a null check, and the
return value of that method is one that should generally be checked for null. This
may lead to a NullPointerException when the code is executed.

You are trying to access data that may not exist. You should check lineEnds[0] for null
before trying to access it.

Notification 6 (Unused code):

You are not using (or reading from) this variable anywhere in this class (it’s a private variable so
it’s not being used outside this class either). You could remove it to get rid of the error and the
code would work the same.

Notification 7 (Parameterized/Raw type):

148

You created a generic object Vector<String> but did not properly initialize it. The new Vector
should be new Vector<String>.

Notification 8 (unimplemented methods):

You are implementing a class (DirectBuffer) but not implementing all the required methods
(viewedBuffer). If you implement this method the error will go away.

Notification 9 (serializable class needs serial ID):

Somewhere down the line of classes/interfaces being implemented/extended from this class,
Serializable is being implemented. Proper usage of this interface requires a serialversionUID
during deserialization to ensure that the classes loaded are compatible with respect to
serialization.

149

Notification 10 (unimplemented methods):

There are methods from the interface you are trying to instantiated as an anonymous class that
you are not implementing. You should implement an interrupt method with no parameters or
change the method signature in the interface.

Notification 11 (method not applicable for arguments):

You are trying to call an interrupt method that is not expected for this Interruptible object. You
should either call the method you implemented with no parameters or make sure the method in
the interface matches this one.

150

Notification 12 (Red class with red header):

You have not instantiated an instance of this class (default constructor) nor have you called any
of the methods.

Notification 13 (Red class--constructor only):

You have not created/instantiated an instance of this class (implemented constructor)

Notification 14 (Simple if statement 1 of 2 branches):

151

You are only executing one branch of this 2 branch if statement (the false branch). You
should run the method with input(s) that will execute the true branch of the if.

Notification 15 (Short circuit return statement):

In the case of the notifications they look at, the methods are not being called. However
each return statement mentions branches; 2 branches means you need to test pass = that
number and also pass != to that number. 4 branches may mean when each part of the
return statement returns true and false.

Notification 16 (try/catch -- no exception caught):

The try block has executed and no exception was caught so the catch block did not
execute.

Notification 17 (try/finally -- exception thrown, partial coverage
in finally):

152

The try attempted to execute but failed, which led to the finally being executed and then
exiting the method. Because only failure of the try and execution of the finally was tested,
the inside of the finally is yellow. If this same test were called twice, once with an exception
and once without, presumably at least the inside of the finally would be green. The red
bracket at the end of the method suggests that the method exited after executing the finally.

Notification 18 (try/finally -- try executed, partial coverage in
finally):

This is the opposite of N17. The try did execute which means the finally does not. Because
this code was only called once (with no exception) the inside of the finally is yellow.

Notification 19 (try/catch -- exception caught):

The try attempted to executed but failed; an exception was thrown and caught so the catch
block was executed.

153

Notification 20 (try/finally -- method exits):

This is similar to N17 except here there is more code in the method instead of just the
closing bracket so we can see more clearly that the method exited once the finally
executed.

Notification 21 (Nested if statements):

154

B.2 Pre-Questionnaire and Consent Form

155

156

157

158

B.3 Session Script

159

Phase 2 Session Script/Talk Points

Hello! My name is __________________ and I am currently conducting research in order to

understand how expressiveness and scalability can be increased in and across program

analysis tools and, if it can, how it affects developers’ ability to create software. I would like

to thank you in advance for taking the time out of your schedule to help us with this

research. We have been having sit down sessions with software developers; during these

sessions, we set up screen and audio recording software, as we have here, present you with

some code being analyzed by a software tool and ask you to explain what is going on. Is this

okay with you?

Before we begin, you can see on the right that there is a list of 18 tasks from 3 different tools.

It has taken past participants approximately 1 hour to complete these tasks. I will be keeping

track of time if you are pressed for time, however 1 hour is by no means the time limit so do

not feel pressured or rushed.

You can use any form of communication you are comfortable with, including pointing,

gestures, coding or drawing. If at any time you feel that you would like to go on to the next

notification, let us know by saying the keyword ‘perfection’ and we will continue. We do not

want you to feel pressured, as this is not a test of your ability as a developer but an attempt

to understand how well program analysis tools are communicating with developers and

learn what these tools can be doing to better communicate with you. [remote sessions only]

We may at times need to intervene to ensure the connection is still maintained however we

will attempt to wait until you have come to some sort of stopping point in your conversation

or otherwise to do so.

Now, if you’re ready, we can get started…

There are a list of Tasks in the Task view. Starting with the FB TODOs, let’s go down the list

...these are FindBugs errors that have been found in an open source project. Let’s start with

the bugs we see here in this class. Can you explain what these errors are trying to tell you?

[Go through all FB TODOs]

FB Task 1

- How confident are you in your explanation?

160

FB Task 2

- How confident are you in your explanation?

FB Task 3

- How confident are you in your explanation?

FB Task 4

- How confident are you in your explanation?

FB Task 5

- How confident are you in your explanation?

Let’s bring up the first task for Eclipse we’re going to look at in the list of COMP TODOs.

There are a number of compiler errors found by Eclipse. Can you explain what is going

161

on/why this class won’t properly compile? [Go through all COMP TODOs]

COMP Task 1

- How confident are you in your explanation?

COMP Task 2

- How confident are you in your explanation?

COMP Task 3

- How confident are you in your explanation?

COMP Task 4

- How confident are you in your explanation?

COMP Task 5

- How confident are you in your explanation?

COMP Task 6

- How confident are you in your explanation?

162

Okay, now we’re going to take a look at the coverage tool EclEmma using more open source

projects. These tasks are labeled ECL TODOs. We have a couple of classes here with various

levels of coverage. Let’s start with the first one. What’s going on there? [Go through all ECL

TODOs]

ECL Class 1

- How confident are you in your explanation?

ECL Class 2

- How confident are you in your explanation?

ECL Class 3

- How confident are you in your explanation?

ECL Class 4

- How confident are you in your explanation?

ECL Class 5

- How confident are you in your explanation?

163

ECL Class 6

- How confident are you in your explanation?

ECL Class 7

- How confident are you in your explanation?

Talk Points

- I’m not sure if I understand what you mean by that…can you explain a bit more?

- Did the notification/the way the tool explained the problem confirm or change what you

understood about the problem?

- Yeah, this one is a bit confusing...would you like to try fixing it to see if you what you

think is the problem actually is the problem or would you like to continue to the next piece

of code?

- I don’t know much about this subject…how would you explain this to me? Is there a

better way to convey this problem than how it is explained here?

- I can tell you know what the problem is, but you seem to be having a hard time explaining

it in words…what do you think is the best way to explain a problem like this?

- We’ve spent a lot of time on this notification and I want to make sure we stay on schedule

so we should probably move on to the next one and then we can come back to this one if we

have time.

164

 And that was the last code segment. [If any notifications were skipped and there’s time, go

back to them now]

Do you have anything else you would like add or any questions you have for us?

[If not]

All right, then that’s it. Again thank you for you time and participation!

Debriefing (keep recording)

So, now that we have complete the study, are there any questions you have for us?

Just to re-iterate, we were not observing your ability as a programmer; we were
observing how you understand and react to tool notifications. That being said, I
recall you saying that you wanted to know whether your explanation was correct
[give explanation of ones they were interested in]

Questions/Talking Points for debfriefing:
- Were there any notifications that you felt were the least helpful/useful? Were
there any that were not clear?

- Is there a better way to explain this in your opinion?

- Is there information that you would have expected to have been available that
was not?

- What made this notification easy to understand / this notification difficult to
understand?

- Did you find it distracting having notifications from other tools present when
attempting to work with one tool? (make note of if this actually occurs during the
session)

I will be creating a transcription of our session and using the data from screen
capture and my transcriptions for my research. The data will be anonymized and
only viewed by myself or my research advisors. If you have any concerns about
confidentiality please let me know so we can address it accordingly.

165

APPENDIX

C

CHAPTER 6 ARTIFACTS

C.1 Example Concept Inventory (Generics)

166

1. Consider the following code (Oracle):
public class Bucket{
 private Object object;

 public void set(Object object) { this.object = object; }
 public Object get() { return object; }
}

Which of the following is an implementation of a generic version of this class that doesn’t
have compiler warnings or errors?

a. public class Bucket<> {

 private Object t;

 public void set(Object t) { this.t = t; }
 public Object get() { return t; }
}

b. public class Bucket<T> {

 private T t;

 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

c. public class Bucket<Object> {

 private Bucket<Object> t;

 public void set(Bucket<Object> t) { this.t = t; }
 public Bucket<Object> get() { return t; }
}

d. public class Bucket<T> {

 private Object t;

 public void set(Object t) { this.t = t; }
 public Object get() { return t; }
}

e. public class Bucket <T> {

 private <T> t;

167

 public void set(<T> t) { this.t = t; }
 public <T> get() { return t; }
}

2. Which of the following is an instantiation of the Bucket class from number 1 for a
bucket of integers that will not lead to compiler warnings or errors?

a. Bucket<T> integerBucket = new Bucket<Integer>();
b. Bucket<Integer> integerBucket = new Bucket();
c. Bucket<Object> integerBucket = new Bucket<Integer>();
d. Bucket<Integer> integerBucket = new Bucket<Integer>();
e. Bucket<> integerBucket = new Bucket<Integer>();

3. Which of the following is not allowed with Java generics?
a. List<String> l1 = new List<String>();

ArrayList<String> l2 = (ArrayList<String>)l1;

b. public static void rtti(List<?> list) {
 if (list instanceof ArrayList<?>) { // ... }
}

c. List<Integer>[] arrayOfLists = new List<Integer>[2];
arrayOfLists.add(1);

d. public class Parser<T extends Exception> {
 public void parse(File file) throws T { // ... }
}

e. public static <E> void append(List<E> list, Class<E> cls) throws
Exception {

 E elem = cls.newInstance();

 list.add(elem);

}

4. Which of the following is a proper explicit invocation of the generic method
compare(Pair<K, V> p1, Pair<K, V> p2)?

a. boolean same = Util.compare<Integer, String>(p1, p2);

b. boolean same = Util.compare(p1, p2);

c. boolean same = Util.<Integer, String>compare(p1, p2);

d. boolean same = Util.<T, T>compare(p1, p2);

e. boolean same = Util.compare((Pair<Integer,String>)p1,

(Pair<Integer,String>)p2);

5. When using type inference, which of the following will compile without warning or errors?
a. Map<String, List<String>> myMap = new HashMap();

168

b. Map<String, List<String>> myMap = new HashMap<>();

c. Map myMap = new HashMap<String, List<String>>();

d. Map<T, V> myMap = new HashMap<String, List<String>>();

e. Map<> myMap = new HashMap<String, List<String>>();

6. What change(s) needs to be made to properly bind the generic type parameter U to
String in the following code:

public <U> void inspect(U u){ … }

a. public <U> void inspect((String)U u){ … }

b. public <U implements String> void inspect(U u){ … }

c. public <U> void inspect(String u){ … }

d. public <String> void inspect(U u){ … }

e. public <U extends String> void inspect(U u){ … }

7. Consider the following code:
public class Node<T> {

 private T data;
 private Node<T> next;

 public Node setData(T data, Node<T> next) }
 this.data = data;
 this.next = next;
 }

 public T getData() { return data; }

 public static <T extends Bucket> void draw(T bucket) { ... }
}
Which of the following is how the code will look, to the Java compiler, after it is
compiled?

a. public class Node {

 private Object data;
 private Node next;

 public Node setData(Object data, Node next) { ... }

 public Object getData() { return data; }

 public static void draw(Bucket bucket) { ... }
}

169

b. public class Node {

 private Object data;
 private Node next;

 public Node setData(Object data, Node next) { ... }

 public Object getData() { return data; }

 public static void draw(Object bucket) { ... }
}

c. public class Node<> {

 private Object data;
 private Node<> next;

 public Node setData(Object data, Node<> next) { ... }

 public Object getData() { return data; }

 public static <Object extends Bucket> void draw(Object
bucket) { ... }

}

d. public class Node {

 private ? data;
 private Node<?> next;

 public Node setData(? data, Node<?> next) { ... }

 public ? getData() { return data; }

 public static <? extends Bucket> void draw(? bucket) { ... }
}

e. It looks the same. The code doesn’t change until runtime.
8. “Is a” relationships in Java mean that because Integer is a Object you can assign an

Integer to an Object (someObject = someInteger;). The same can be said for the
relationship between Integer and Number.

Now, consider the following code:

public void shapeTest(Shape<Number> n) { /* ... */ }

170

Based on the signature of this method, could you pass in Shape<Integer> and/or
Shape<Object>?

a. Yes, you could pass in both.
b. No, you can’t pass in either.
c. You can pass in Shape<Integer> but not Shape<Object>.
d. You can pass in Shape<Object> but not Shape<Integer>.
e. You can pass in either if you cast it to Shape<Number>.

9. Consider the following code:

List list = new ArrayList<>();
Collections.sort(list);

Upon compilation, you get the following warning:
Type safety: Unchecked invocation max(List) of the generic method max(Collection<?
extends T>) of type Collections.

What change needs to be made to resolve this warning and prevent others?

a. List list = new ArrayList<String>();
 Collections.sort(list);

b. List list = new ArrayList();
 Collections.sort(list);

c. List<> list = new ArrayList<>();
 Collections.sort(list);

d. List<String> list = new ArrayList();
 Collections.sort(list);

e. List<String> list = new ArrayList<String>();
 Collections.sort(list);

10. Consider the following code:
StringBuilder myText = new StringBuilder();

List<String> myList = new ArrayList<String>();
boolean containsMyText = myList.contains(myText);

After running static analysis, you get the following notification:

Bug: StringBuilder is incompatible with expected argument type String in new
util.Configuration(String, String)

This call to a generic collection method contains an argument with an incompatible class
from that of the collection's parameter (i.e., the type of the argument is neither a
supertype nor a subtype of the corresponding generic type argument). Therefore, it is
unlikely that the collection contains any objects that are equal to the method argument
used here. Most likely, the wrong value is being passed to the method.

171

In general, instances of two unrelated classes are not equal. For example, if the Foo and
Bar classes are not related by subtyping, then an instance of Foo should not be equal to
an instance of Bar. Among other issues, doing so will likely result in an equals method
that is not symmetrical. For example, if you define the Foo class so that a Foo can be
equal to a String, your equals method isn't symmetrical since a String can only be equal
to a String.

In rare cases, people do define nonsymmetrical equals methods and still manage to
make their code work. Although none of the APIs document or guarantee it, it is typically
the case that if you check if a Collection<String> contains a Foo, the equals method of
argument (e.g., the equals method of the Foo class) used to perform the equality checks.

Which of the following will not resolve the notification?

a. String myText = “my text”;
...

List<String> myList = new ArrayList<String>();
boolean containsMyText = myList.contains(myText);

b. StringBuilder myText = new StringBuilder();
...

List<String> myList = new ArrayList<String>();
boolean containsMyText = myList.contains(myText.substring(0));

c. StringBuilder myText = new StringBuilder();
...

List<String> myList = new ArrayList<String>();
boolean containsMyText = myList.contains(myText.toString());

d.StringBuilder myText = new StringBuilder();
...

List<StringBuilder> myList = new ArrayList<StringBuilder>();
boolean containsMyText = myList.contains(myText);

e.StringBuilder myText = new StringBuilder();
...

List<String> myList = new ArrayList<String>();
boolean containsMyText = myList.contains((String)myText);

172

C.2 Example Feature Hierarchy (Generics)

173

To	determine	what	generics	may	be	more	advanced	than	others,	we	explored	
is	how	generics	usage	might	relate	to	levels	of	experience.	Under	the	assumption	
that	higher	frequency	of	usage	corresponds	to	familiarity,		we	explored	frequency	of	
generics	usage	types	to	hypothesize	the	progression	developers	may	take	through	
generics	usage	types.	If	usage	counts	are	generally	low,	we	assume	generally	
developers	are	less	familiar	with	those	types	of	generics.	We	also	assume	that	the	
concepts	developers	are	less	likely	to	be	familiar	with	are	more	advanced	concepts.		
	

To	create	our	hierarchy,	we	first	ordered	the	different	generic	usage	types	in	
order	of	most	to	least	frequently	used	for	each	developer	with	generics	in	their	
repository.	We	then	compared	the	position	of	each	type	of	generics	usage	across	
developers	in	relation	to	other	types	of	generics	usage.	If	two	generics	usage	types	
appeared	next	to	one	another	in	more	than	half	of	the	repository	orderings,	we	
noted	a	potential	ancestor	relationship	between	the	two	(if	A	is	an	ancestor	of	B,	in	
the	context	of	our	work	,	A	and	B	are	learned	in	succession).		

	
	

	
	

Figure	1.	Proposed	generics	usage	type	progression	
	

Our	proposed	progression	through	generics	usage	types	is	shown	in	the	
Figure	1.		The	colors	indicate	the	level	of	generics	usage	we	associate	with	that	type	
of	generics	usage	(beginner,	intermediate,	expert).	The	arrow	on	the	left	hand	side	

Type	Declara+ons	 Class	Instances	

Type	Argument	Methods	 Implicit	Method	Invoca+ons	

Wildcard	Generics	

Nested	Generics	 Type	Parameter	Methods	

Type	Parameter	Fields	

Diamond	Nota+on	

Bounds	

Explicit	Method	Invoca+ons	

higher		
frequency	

lower		
frequency	

174

indicates	the	direction	of	code	contribution	counts.	The	name	for	each	type	of	
generics	usage	was	determined	based	on	what	they	are	called	in	ASTParser,	the	
library	we	used	to	analyze	code,	and	map	to	code	as	follows:	

	
• Type	Declarations	!	public	class	<T>	Box{}	
• Class	Instances	!	List<String>	a	=	new	ArrayList<String>();	
• Implicit	Method	Invocations	!	HashMap<String,	String>	a	=	

b.getMap();	getMap()	returns	a	HashMap	
• Type	Argument	Methods	!	public	List<String>	method()	
• Wildcard	Generics	!	Any	generics	that	uses	the	wildcard	(?)	generic	type	
• Nested	Generics	!	generics	in	the	form	of	Observable<Event<T>>	or	

Observable<Event<String>>	
• Type	Parameter	Methods	!	public	T	get();		
• Type	Parameter	Fields	!	public	T	t;	
• Diamond	Notation	!	List<String>	a	=	new	ArrayList<>();	
• Explicit	Method	Invocations	!	HashMap<String,	String>	a	=	

b.<HashMap<String,	String>>getMap();	
• Bounds	!	public	<T	extends	Comparable<T>>	T	max(){}	

	
To	determine	the	cutoffs	for	the	levels	in	our	hierarchy,	we	looked	at	the	

increase	in	repositories	without	that	usage	type.		For	example,	only	one	repository	
contained	generic	bounds,	the	usage	type	at	the	top	of	our	hierarchy.		
	

To	validate	our	groupings,	we	compared	our	hierarchy	to	the	questions	
missed	by	developers	that	scored	highly	on	the	concept	inventory.	The	concepts	at	
the	top	half	of	our	hierarchy	map	to	the	questions	on	the	inventory	missed	by	top	
scorers.	For	example,	all	top	scorers	missed	the	question	about	explicit	method	
invocations,	one	of	usage	types	at	the	top	of	our	hierarchy.	
	

In	future	work,	we	will	further	explore	the	validity	of	our	hierarchy	by	
creating	another	hierarchy	with	a	larger	set	of	developers	and	comparing	the	two.		

175

C.3 Example Concept Map and Bloom’s Taxonomy Assessment Mapping

(Generics)

176

Concepts Resources Remember Understand Apply Evaluate Analyze Create
Generic Types 10 https://docs.oracle.com/javase/tutorial/java/generics/types.html 1 2

Generic Methods https://docs.oracle.com/javase/tutorial/java/generics/methods.html 9 4

Bounded Type Parameters 11 https://docs.oracle.com/javase/tutorial/java/generics/bounded.html 6

Generics, Inheritance,
and Subtypes https://docs.oracle.com/javase/tutorial/java/generics/inheritance.html 8

Type Inference https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html 5

Wildcards 16 17 18 19 20 https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html 10

Type Erasure 9 10 11 12 https://docs.oracle.com/javase/tutorial/java/generics/erasure.html 7

Erasure of Generic Types https://docs.oracle.com/javase/tutorial/java/generics/genTypes.html

https://docs.oracle.com/javase/tutorial/java/generics/genMethods.html

Effects of Type Erasure
and Bridge Methods https://docs.oracle.com/javase/tutorial/java/generics/bridgeMethods.html

Non-Reifiable Types

Restrictions on Generics https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html 3

Raw Types https://docs.oracle.com/javase/tutorial/java/generics/rawTypes.html

Generic Methods and
Bounded Type Parameters https://docs.oracle.com/javase/tutorial/java/generics/boundedTypeParams.html

Upper Bounded Wildcards https://docs.oracle.com/javase/tutorial/java/generics/upperBounded.html

Unbounded Wildcards https://docs.oracle.com/javase/tutorial/java/generics/unboundedWildcards.html

Lower Bounded Wildcards https://docs.oracle.com/javase/tutorial/java/generics/lowerBounded.html

Wildcards and Subtyping https://docs.oracle.com/javase/tutorial/java/generics/subtyping.html

Wildcard Capture
and Helper Methods https://docs.oracle.com/javase/tutorial/java/generics/capture.html

Ancestor
Concepts

Erasure of Generic Methods

https://docs.oracle.com/javase/tutorial/java/generics/nonReifiableVarargsType.html

177

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Related Work
	Program Analysis Tools
	Static Analysis Tools
	Dynamic Analysis Tools
	Communication via Notifications
	Typical Notification Components
	Breaking Down the Code Developers Write & Tools Analyze

	Program Analysis Tool Usability
	Aiding Notification Resolution
	Predictive User Models

	Static Analysis Tools Use
	Exploring Developer Tool Use
	Participants
	Research Questions
	Part I: Questions and Short Responses
	Part II: Interactive Interview
	Part III: Participatory Design
	Coding Interview Responses

	Barriers to Tool Use
	RQ1: Reasons for Use and Underuse
	RQ2: Workflow Integration
	RQ3: Tool Design
	Threats to Validity

	Next Steps to A Solution
	Notification Resolution Solutions
	Notification Understandability Solutions

	Theory of (Mis)communication
	Identifying Challenges
	Participants
	Program Analysis Tools Investigated
	Study Protocol
	Data Collection
	Data Analysis
	Study Credibility & Findings Validation

	Knowledge-Related Challenges
	Knowledge Gaps
	Knowledge Mismatches
	Member Check

	From Theory to Practice
	Filling Developer Knowledge Gaps
	Matching Developer Expectations

	Assessing Developer Knowledge
	Modified Concept Inventories
	Defining Conceptual Content
	Building A Bank of Questions
	Think Aloud Pilots
	Concept Inventory Validation
	Item Analysis
	Distractor Analysis

	Limitations & Challenges

	Developer Knowledge Classification
	Knowledge Acquisition
	Knowledge Classification
	Knowledge Validation
	Knowledge Prediction

	Knowledge Models
	RQ1 Findings
	RQ2 Findings

	Implications
	Program Analysis Tool Output
	Industry & Education Practices

	Lessons Learned
	Limitations
	Challenges

	Knowledge-Based Communication
	Proposed Approach
	Notification Adaptations
	Notification Selection
	Adaptation Evaluation

	Adaptation Effectiveness
	Resolving Adapted Notifications
	Adaptation Preferences
	Threats to Validity

	From ``Pipe Dream'' to Reality
	Challenges to Overcome

	Contributions and Future Work
	Future Directions
	The Big Picture
	Developer Knowledge Acquisition
	Developer Knowledge Classification

	Bibliography
	APPENDICES
	Chapter 3 Artifacts
	Pre-Interview Questionnaire
	Interview Script
	Participatory Design Sketches
	Coding Categories with Examples

	Chapter 4 Artifacts
	Notification Oracle
	Pre-Questionnaire and Consent Form
	Session Script

	Chapter 6 Artifacts
	Example Concept Inventory (Generics)
	Example Feature Hierarchy (Generics)
	Example Concept Map and Bloom's Taxonomy Assessment Mapping (Generics)

