
Brittany Johnson 1/5

Research Statement
Brittany Johnson (bjohnson@cs.umass.edu)

My research investigates software development practices. More specifically, I study if and how existing
tools and techniques support developers’ ability to produce high quality, ethically-sound software and
develop new tools to evaluate hypotheses regarding developer needs during the software development
process. The goal of my research is to create and disseminate empirically validated theories and
techniques that can improve developer tools and processes for a positive and practical effect on their
productivity and quality of the resulting software product. I regularly publish in top conferences and
journals in software engineering, including ICSE [7, 12], FSE [8, 9, 16], and TSE [11, 17].

Improving Software Ethics with
Empirically Validated Tools & Processes

Advances in modern technology have provided developers with the means for building software that
makes smarter, more objective decisions and automating more tasks. Because of these advances,
software is increasingly being used to replace human intervention in our day to day lives with the
goal of improving quality of life; from healthcare, where software is being used to diagnose and treat
medical conditions [6], to the criminal justice system, where some states are using software to determine
criminal sentencing and bail [2].

While machine learning allows software to automate more decisions, and has the potential to de-
crease bias in decision-making, it also increases the likelihood that software will behave in unexpected
and undesired ways that can have a negative impact on quality of life. This potential for negative so-
cietal impact presents an ethical challenge regarding how software should work and, more importantly,
the role developers play in minimizing the negative impact these software systems can have.

Now, more than ever, it is important for us to understand the tools and processes developers use
to build software so that we can ensure they are equipped to effectively build ethically-sound, high
quality software. Research suggests that we can support developers while completing development
tasks by reducing developer effort (e.g., providing tools that automate manual tasks) [3]. Therefore,
for developers to make ethical considerations like fairness while still being productive, we need to
provide tools, techniques, and resources that effectively support this additional step.

The goal of my research is to help developers efficiently and effectively produce high quality, ethically-
sound software by evaluating and improving the tools and processes they use in their day to day work
and development environments. My research vision is for developers to be empowered with tools and
practices that effectively support their ability to produce high quality, ethically-sound software.

1 Research Contributions

My vision is to provide validated tools, techniques, and practices that support ethical software develop-
ment. Before I can develop interventions developers want to use, it is necessary to understand the kinds
of tools developers use, how and why they use them, and barriers to use that could affect the adoption
or use of new technologies. To improve this understanding, my prior work investigated developer tool
use and discovered that one of the primary reasons developers do not use existing tools is difficulty
interpreting tool output and that this difficulty stems from various kinds of mismatches between how

1



Brittany Johnson 2/5

tools communicate information and developers’ expectations. Using these findings, I have begun to
explore tooling we can provide to developers that support the completion of development tasks, like
debugging, and the evaluation of software for ethical concerns, like fairness.

1.1 Empirical Studies on Developer Tool Use

Foundational to my proposed research are the empirical studies I conducted to explore barriers to
developer tool use and productivity [7, 9, 11]. The first asked why developers do not use their tools [7].
Based on this interactive interview study of 20 professional developers, one reason developer don’t
use tools is difficulty interpreting tool notifications. This finding informs our understanding of why
developers do (and do not) use tools.

Based on these findings, my second foundational work explored why developers encounter chal-
lenges when interpreting tool output [9]. I conducted sessions with 26 developers, all with different
backgrounds and years of programming experience and used think-aloud and observation protocols to
collect data on the challenges they encounter when understanding tool output. Based on the findings, I
proposed a tool (mis) communication theory, which states that the challenges developers encounter stem
from gaps and mismatches between what developers expect based on their knowledge and experiences
and how tools communicate.

1.2 Removing Barriers to Tool Use

Using empirical foundations from my prior work, and work done by others, I have explored solutions
to the tool underuse and miscommunication problems. Though tools often help developers figure out
the existence of a problem, figuring out why the tool is complaining and how to fix the defect is
often left to the developer [7]. To address this issue in testing tools like JUnit, which currently only
help find defects, I developed and evaluated a new, complementary testing technique called Causal
Testing [12]. Causal Testing is a novel method for identifying root causes of failing executions based
on the theory of counterfactual causality. However, instead of using observational data, my approach
takes a manipulationist approach to causal inference [18], modifying and executing tests to observe
causal relationships and derive causal claims about the defects’ root causes.

Causal Testing generates similar passing and failing tests along with their execution traces, which
allows developers to compare passing and failing inputs and execution paths. To evaluate the usefulness
of Causal Testing for debugging, I conducted a user study with 37 developers where I asked them to
debug six failing tests using JUnit and Holmes, a proof-of-concept Causal Testing implementation. The
results of this evaluation suggests Causal Testing is complementary to tools like JUnit and can improve
developers’ ability to determine the cause of a failing test, thereby improving their ability to remove
the defect.

Along with being useful for debugging, Causal Testing should be able to scale to the different
kinds of tests developers write and bugs they find. Therefore, along with a user study, I conducted
an applicability evaluation on the Defects4J benchmark [14] where I manually categorized 330 defects
based on whether Causal Testing could be applied and the potential for information provided to be
useful for debugging. Findings from this evaluation suggested Causal Testing could be applied to 71%
of real-world defects in the Defects4J benchmark, and for 77% of those, it could help developers identify
the root cause of the defect.

Another solution I have explored for improving existing tools is the ability to build and use developer
knowledge models, trained using developer code contributions, to adapt the way tools communicate to
the developer using it [8, 10]. To evaluate the feasibility of predicting developer knowledge, I developed

2



Brittany Johnson 3/5

an approach that uses concept-specific code from public repositories to predict developer knowledge
of a given programming concept [8]. Concept-specific code maps directly to a programming concept,
such as a generic type declarations which map to the concept of generics. My approach automatically
collects developer code contributions and performs data reduction based on data features and heuristics
from existing literature, such as how recently the code was written [4]. Predictions of developer concept
knowledge based on concept-specific code are more accurate than those based on all code ever written
and yield accuracy between 47% and 78%.

1.3 Tooling to Support Building Fair Software

Just as practice has to keep up with changes in society and technology, as should research. Therefore,
an important problem I will explore is providing a better understanding of and support for ethical
software engineering practices. More specifically, my previous work has focused on tooling to help
developers evaluate software systems that use machine learning models for bias [1, 13].

Fairness is a new concern for developers added to the list of other concerns when developing software,
along with things like performance and security. While fairness is an important consideration, a fair
and inaccurate model can have similar negative impacts as an accurate yet unfair model. To help
developers reason about trade-offs when considering both fairness and other metrics of quality, my prior
work evaluated a novel model exploration tool called fairkit-learn [13]. Using fairkit-learn, developers
can attempt to reason about fairness and other quality metrics simultaneously.

To evaluate fairkit-learn in comparison with the state-of-the-art in model training and evaluation, I
ran a within-subjects user study with 54 students in an advanced software engineering course. Findings
from this study suggest that developers can use fairkit-learn to produce more fair models than when
using competing toolkits scikit-learn1 or AI Fairness 360 [19]. Data from this study also provided
insights into how developers reason about fairness in machine learning models when using traditional
tools, like scikit-learn, that do not include functionality for evaluating for ethical concerns like fairness.
More specifically, this study found that developers may have different, sometimes contradictory, ways
of reasoning about fairness when asked to do so, often using accuracy as a proxy for fairness, despite
clear evidence that those metrics are often at odds.

Another solution I contributed to with regards to software fairness is a tool called Themis [1].
Themis is an automated test suite generator that provides functionality for detecting and measuring
discrimination based on sensitive inputs. Using Themis, developers can generate tests that can help
expose biased, or unfair, behavior with regard to protected attributes such as gender or race. Previous
work found that Themis’ technique is effective in a controlled setting [5]; as I discuss in my research
agenda, I will use my expertise in empirical studies to explore how well tools like Themis work in
practice and improvements needed to make fairness testing scalable.

2 Research Agenda

My research agenda further develops and expands on my previous contributions, with the goal of pro-
viding tools and techniques that support developers while making ethical considerations, like fairness,
during the software development process. Research I plan to work and build on includes the following.

1http://scikit-learn.org/stable/

3



Brittany Johnson 4/5

2.1 The Role of Ethics in Software Development

Advances in technology, such as the increasing ubiquity of machine learning in software, have led to
advances in how software is integrated into everyday life. However, with great power comes great
responsibility. Now that software can automate more decisions, the potential for software to have
a negative or unfavorable impact on society is much greater. While my prior work has focused on
bias in software [1, 13], fairness is just one of the many potential ethical concerns regarding software
development and use. Furthermore, despite the progress in ethical tooling and processes, it is still
unclear which (if any) of these are used in practice.

Building on my prior work, and work done by others in this area [15, 19], I will investigate the
role developers can and should play in building and deploying software that is designed, implemented,
and maintained with explicit and intentional considerations regarding the social and legal effects the
software will have on its diverse set of users. More specifically, my research will explore 1) existing
ethical software development tools and practices, 2) developer perceptions of ethical concerns related to
software production, 3) gaps in existing processes that hinder ethical software practices, and 4) solutions
that help fill those gaps. One direction I plan to explore in the near future is the types of ethical defects
developers may encounter and the ability for tools like Themis and techniques like Causal Testing to
help debug these ethical defects.

2.2 Development Practice Effectiveness

It is important to evaluate how developers build software to determine the ability for a given interven-
tion, such as a tool or process change, to do what it was designed to do. As I have shown with my prior
work [7, 9, 11, 12], empirical studies are useful for better understanding a given phenomenon and can
provide foundations for improving developer tools and processes. However, despite numerous studies
on how and why developers adopt and use tools and processes, it is still unclear which are effective
(and which are not), and more importantly how we can define tool effectiveness so software teams can
know the difference.

I will conduct empirical studies that attempt to understand and define what it means for a software
development practice to be effective, starting with existing practices. This includes, but is not limited
to, how developers and other software stakeholders define effectiveness, the ability for a given practice
to foster or hinder developer productivity, and the relationship between developer and end-user per-
ceptions of software practices and the resulting product. These evaluations will validate, or disprove,
existing hypotheses, potentially providing new directions to explore, and provide new tools, techniques,
and insights for improvements and future evaluations.

As I have outlined, there are numerous directions my research can and will go. Given the interdisci-
plinary nature of my research, I will continue to pursue collaborations with students, other academic
researchers, and industry to address these research challenges. I strongly believe that through a deeper
understanding of developer practices and needs when developing software, we can improve practice and
the resulting software products.

References
[1] Angell, R., Johnson, B., Brun, Y. & Meliou, A., (October 2018). Themis: Automatically testing software for

discrimination. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (pp. 871-875). ACM.

4



Brittany Johnson 5/5

[2] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016).Machine Bias. ProPublica. https://www.propublica.org/ar-
ticle/machine-bias-risk-assessments-in-criminal-sentencing.

[3] Bruckhaus, T., Madhavii, N. H., Janssen, I., & Henshaw, J. (1996). The impact of tools on software productivity. IEEE
Software, 13(5), 29-38.

[4] Fritz, T., Ou, J., Murphy, G. C., & Murphy-Hill, E. (2010, May). A degree-of-knowledge model to capture source code
familiarity. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1(pp.
385-394). ACM.

[5] Galhotra, S., Brun, Y., & Meliou, A. (August 2017). Fairness testing: testing software for discrimination. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 498-510). ACM.

[6] Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., & Wang, Y. (2017). Artificial intelligence in healthcare: past,
present and future. Stroke and vascular neurology. 2(4), 230-243.

[7] Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013, May). Why don’t software developers use static
analysis tools to find bugs?. In 2013 35th International Conference on Software Engineering (ICSE) (pp. 672-681).
IEEE.

[8] Johnson, B., Pandita, R., Murphy-Hill, E., & Heckman, S. (2015, August). Bespoke tools: adapted to the concepts
developers know. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (pp. 878-881).
ACM.

[9] Johnson, B., Pandita, R., Smith, J., Ford, D., Elder, S., Murphy-Hill, E., & Sadowski, C. A Cross-Tool Commu-
nication Study on Program Analysis Tool Notifications. In 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE).

[10] Johnson, B. I. (2017). A Tool (Mis) communication Theory and Adaptive Approach for Supporting Developer Tool
Use . North Carolina State University.

[11] Johnson, B., Zimmermann, T., & Bird, C. (February 2019.)The Effect of Work Environments on Productivity and
Satisfaction of Software Engineers. IEEE Transactions on Software Engineering.

[12] Johnson, B., Brun, Y., & Meliou, A. (2020). Causal Testing: Understanding Defects’ Root Causes. To appear in
the Proceedings of the 2020 International Conference on Software Engineering.

[13] Johnson, B.,Bartola, J., Angell, R., Keith, K., Witty, S., Giguere, S., & Brun, Y. (2019). Fairkit, Fairkit, on the
Wall, Who’s the Fairest of Them All? Supporting Data Scientists in Training Fair Models. In submission.

[14] Just, R., Jalali, D., & Ernst, M. D. (2014). Defects4J: A database of existing faults to enable controlled testing
studies for Java programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis (pp.
437-440). ACM.

[15] McNamara, A., Smith, J. & Murphy-Hill, E. (October 2018). Does ACM’s code of ethics change ethical decision mak-
ing in software development?. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (pp. 729-733). ACM.

[16] Smith, J., Johnson, B., Murphy-Hill, E., Chu, B., & Lipford, H. R. (2015, August). Questions developers ask while
diagnosing potential security vulnerabilities with static analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (pp. 248-259). ACM.

[17] Smith, J., Johnson, B., Murphy-Hill, E., Chu, B. T., & Richter, H. (2018). How developers diagnose potential
security vulnerabilities with a static analysis tool. IEEE Transactions on Software Engineering.

[18] Woodward, J. (2005.) Making things happen: A theory of causal explanation. Oxford University Press.

[19] Bellamy, R. K., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., & Nagar, S. (2019). AI Fairness 360:
An Extensible Toolkit for Detecting and Mitigating Algorithmic Bias. IBM Journal of Research and Development.

5


