
Causal Testing: Understanding Defects’ Root Causes
Brittany Johnson

University of Massachusetts Amherst
Amherst, MA, USA

bjohnson@cs.umass.edu

Yuriy Brun
University of Massachusetts Amherst

Amherst, MA, USA
brun@cs.umass.edu

Alexandra Meliou
University of Massachusetts Amherst

Amherst, MA, USA
ameli@cs.umass.edu

ABSTRACT
Understanding the root cause of a defect is critical to isolating and
repairing buggy behavior. We present Causal Testing, a newmethod
of root-cause analysis that relies on the theory of counterfactual
causality to identify a set of executions that likely hold key causal
information necessary to understand and repair buggy behavior.
Using the Defects4J benchmark, we find that Causal Testing could
be applied to 71% of real-world defects, and for 77% of those, it can
help developers identify the root cause of the defect. A controlled
experiment with 37 developers shows that Causal Testing improves
participants’ ability to identify the cause of the defect from 80% of
the time with standard testing tools to 86% of the time with Causal
Testing. The participants report that Causal Testing provides useful
information they cannot get using tools such as JUnit. Holmes, our
prototype, open-source Eclipse plugin implementation of Causal
Testing, is available at http://holmes.cs.umass.edu/.

CCS CONCEPTS
• Software and its engineering → Software testing and
debugging.
KEYWORDS
Causal Testing, causality, theory of counterfactual causality, soft-
ware debugging, test fuzzing, automated test generation, Holmes

ACM Reference Format:
Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing:
Understanding Defects’ Root Causes. In 42nd International Conference on
Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Ko-
rea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.
3380377

1 INTRODUCTION
Debugging and understanding software behavior is an important
part of building software systems. To help developers debug, many
existing approaches, such as spectrum-based fault localization [21,
41], aim to automatically localize bugs to a specific location in
the code [6, 18]. However, finding the relevant line is often not
enough to help fix the bug [56]. Instead, developers need help
identifying and understanding the root cause of buggy behavior.
While techniques such as delta debugging can minimize a failing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380377

test input [74] and a set of test-breaking changes [73], they do not
help explain why the code is faulty [40].

To address this shortcoming of modern debugging tools, this
paper presents Causal Testing, a novel technique for identifying root
causes of failing executions based on the theory of counterfactual
causality. Causal Testing takes a manipulationist approach to causal
inference [71], modifying and executing tests to observe causal
relationships and derive causal claims about the defects’ root causes.

Given one or more failing executions, Causal Testing conducts
causal experiments by modifying the existing tests to produce a
small set of executions that differ minimally from the failing ones
but do not exhibit the faulty behavior. By observing a behavior and
then purposefully changing the input to observe the behavioral
changes, Causal Testing infers causal relationships [71]: The change
in the input causes the behavioral change. Causal Testing looks for
two kinds of minimally-different executions, ones whose inputs
are similar and ones whose execution paths are similar. When
the differences between executions, either in the inputs or in the
execution paths, are small, but exhibit different test behavior, these
small, causal differences can help developers understand what is
causing the faulty behavior.

Consider a developer working on a web-based geo-mapping ser-
vice (such as Google Maps or MapQuest) receiving a bug report
that the directions between “New York, NY, USA” and “900 René
Lévesque Blvd. WMontreal, QC, Canada” are wrong. The developer
replicates the faulty behavior and hypothesizes potential causes.
Maybe the special characters in “René Lévesque” caused a problem.
Maybe the first address being a city and the second a specific build-
ing caused a mismatch in internal data types. Maybe the route is too
long and the service’s precomputing of some routes is causing the
problem. Maybe construction on the Tappan Zee Bridge along the
route has created flawed route information in the database. There
are many possible causes to consider. The developer decides to
step through the faulty execution, but the shortest path algorithm
coupled with precomputed-route caching and many optimizations
is complex, and it is not clear how the wrong route is produced.
The developer gets lost inside the many libraries and cache calls,
and the stack trace quickly becomes unmanageable.

Suppose, instead, a tool had analyzed the bug report’s test and
presented the developer with the information in Figure 1. The devel-
oper would quickly see that the special characters, the first address
being a city, the length of the route, and the construction are not the
root cause of the problem. Instead, all the failing test cases have one
address in the United States and the other in Canada, whereas all the
passing test cases have both the starting and ending addresses in the
same country. Further, the tool found a passing and a failing input
with minimal execution trace differences: the failing execution con-
tains a call to the metricConvert(pathSoFar) method but the passing one

http://holmes.cs.umass.edu/
https://doi.org/10.1145/3377811.3380377
https://doi.org/10.1145/3377811.3380377
https://doi.org/10.1145/3377811.3380377

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Brittany Johnson, Yuriy Brun, and Alexandra Meliou

1 Failing: New York , NY, USA to

900 René Lévesque Blvd. W Montreal , QC, Canada

2 Failing: Boston , MA, USA to

900 René Lévesque Blvd. W Montreal , QC, Canada

3 Failing: New York , NY, USA to

1 Harbour Square , Toronto , ON, Canada

4 Passing: New York , NY, USA to

39 Dalton St, Boston , MA, USA

5 Passing: Toronto , ON, Canada to

900 René Lévesque Blvd. W Montreal , QC, Canada

6 Passing: Vancouver , BC, Canada to

900 René Lévesque Blvd. W Montreal , QC, Canada

Minimally-different execution traces:

7 Failing: Passing:

8 [...] [...]

9 findSubEndPoints(sor6 , tar7); findSubEndPoints(sor6 , tar7);

10 findSubEndPoints(sor7 , tar8); findSubEndPoints(sor7 , tar8);

11 metricConvert(pathSoFar);

12 findSubEndPoints(sor8 , tar9); findSubEndPoints(sor8 , tar9);

13 [...] [...]

Figure 1: Passing and failing tests for a geo-mapping service appli-
cation, and test execution traces.

does not.1 Armed with this information, the developer is now better
equipped to find and edit code to address the root cause of the bug.

We implement Causal Testing in an open-source, proof-of-con-
cept Eclipse plug-in, Holmes, that works on Java programs and
interfaces with JUnit. Holmes is publicly available at http://holmes.
cs.umass.edu/. We evaluate Causal Testing in two ways. First, we
use Holmes in a controlled experiment. We asked 37 developers
to identify the root causes of real-world defects, with and without
access to Holmes. We found that developers could identify the root
cause 86% of the time when using Holmes, but only 80% of the time
without it. Second, we evaluate Causal Testing’s applicability to
real-world defects by considering defects from real-world programs
in the Defects4J benchmark [45]. We found that Causal Testing
could be applied to 71% of real-world defects, and that for 77% of
those, it could help developers identify the root cause.

A rich body of prior research aims to help developers debug
faulty behavior. Earlier-mentioned fault localization techniques [3,
6, 18, 21, 32, 33, 41, 47, 48, 70, 75] rank code locations according
to the likelihood that they contain a fault, for example using test
cases [41] or static code features [47, 48]. The test-based rankings
can be improved, for example, by generating extra tests [6, 75] or
by applying statistical causal inference to observational data [7, 8].
Automated test generation can create new tests, which can help dis-
cover buggy behavior and debug it [29, 30, 35, 42], and techniques
can minimize test suites [38, 54, 68] and individual tests [34, 73, 74]
to help deliver the most relevant debugging information to the
developer. These techniques can help developers identify where
the bug is. By contrast, Causal Testing focuses on explaining why
buggy behavior is taking place. Unlike these prior techniques,
Causal Testing generates pairs of very similar tests that nonetheless
exhibit different behavior. Relatedly, considering tests that exhibit
minimally different behavior, BugEx focuses on tests that differ
slightly in branching behavior [60] and Darwin generates tests that

1Note that prior work, such as spectrum-based fault localization [21, 41], can identify
the differences in the traces of existing tests; the key contribution of the tool we
describe here is generating the relevant executions with the goal of minimizing input
and execution trace differences.

pass a version of the program without the defect but fail a version
with the defect [58]. Unlike these techniques, Causal Testing re-
quires only a single, faulty version of the code, and only a single
failing test, and then conducts causal experiments and uses the
theory of counterfactual causality to produce minimally-different
tests and executions that help developers understand the cause of
the underlying defect.

The rest of this paper is structured as follows. Section 2 illustrates
how Causal Testing can help developers on a real-world defect.
Sections 3 and 4 describe Causal Testing and Holmes, respectively.
Section 5 evaluates how useful Holmes is in identifying root causes
and Section 6 evaluates how applicable Causal Testing is to real-
world defects. Section 7 discusses the implications of our findings
and limitations and threats to the validity of our work. Finally
Section 8 places our work in the context of related research, and
Section 9 summarizes our contributions.

2 MOTIVATING EXAMPLE
Consider Amaya, a developer who regularly contributes to open
source projects. Amaya codes primarily in Java and regularly uses
the Eclipse IDE and JUnit. Amaya is working on addressing a bug
report in the Apache Commons Lang project. The report comes
with a failing test (see 1 in Figure 2).

Figure 2 shows Amaya’s IDE as she works on this bug. Amaya
runs the test to reproduce the error and JUnit reports that an ex-
ception occurred while trying to create the number 0Xfade (see 2 in
Figure 2). Amaya looks through the JUnit failure trace, looking for
the place the code threw the exception (see 3 Figure 2). Amaya ob-
serves that the exception comes from within a switch statment, and
that there is no case for the e at the end of 0Xfade. To add such a case,
Amaya examines the other switch cases and realizes that each case is
making a different kind of number, e.g., the case for l creates either
a long or BigInteger. Since 0Xfade is 64222, Amaya conjectures that this
number fits in an int, and creates a new method call to createInteger()

inside of the case for e. Unfortunately, the test still fails.
Using the debugger to step through the test’s execution, Amaya

sees the NumberFormatException thrown on line 545 (see 3 in Figure 2).
She sees that there are two other locations the input touches (see
4 and 5 in Figure 2) during execution that could be affecting the
outcome. She now realizes that the code on lines 497–545, despite
being where the exception was thrown, may not be the location of
the defect’s cause. She is feeling stuck.

But then, Amaya remembers a friend telling her about Holmes, a
Causal Testing Eclipse plug-in that helps developers debug. Holmes
tells her that the code fails on the input 0Xfade, but passes on input
0xfade. The key difference is the lower case x. Also, according to
the execution trace provided by Holmes, these inputs differ in
the execution of line 458 (see 4 in Figure 2). The if statement
fails to check for the 0X prefix. Now, armed with the cause of the
defect, Amaya turns to the Internet to find out the hexadecimal
specification and learns that the test is right, 0X and 0x are both valid
prefixes for hexadecimal numbers. She augments the if statement
and the bug is resolved!

Holmes implements Causal Testing, a new technique for helping
understand root causes of behavior. Holmes takes a failing test
case (or test cases) and perturbs its inputs to generate a pool of

http://holmes.cs.umass.edu/
http://holmes.cs.umass.edu/

Causal Testing: Understanding Defects’ Root Causes ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

1

2

3

4

5

Figure 2: Amaya’s Eclipse IDE, while she is debugging a defect evidenced by a failing test.

possible inputs. For example, Holmes may perturb 0Xfade to 0XFADE,
0xfade, edafX, 0Xfad, Xfade, fade, and many more. Holmes then executes
all these inputs to find those that pass the original test’s oracle, and,
next, selects from the passing test cases a small number such that
either their inputs or their execution traces are the most similar to
the original, failing test case. Those most-similar passing test cases
help the developer understand the key input difference that makes
the test pass. Sometimes, Holmes may find other failing test cases
whose inputs are even more similar to the passing ones than the
original input, and it would report those too. The idea is to show
the smallest difference that causes the behavior to change.

Holmes presents both the static (test input) and dynamic (execu-
tion trace) information to the developer to compare the minimally-
different passing and failing executions to better understand the
root cause of the bug. For example, for this bug, Holmes shows
the inputs, 0Xfade and 0xfade, and the traces of the two executions,
showing that the passing test enters a method from createInteger that
the failing test cases do not, dictating to Amaya the expected code
behavior, leading her to fix the bug.

3 CAUSAL TESTING
Amaya’s debugging experience is based on what actual developers
did while debugging real defects in a real-world version of Apache
Commons Lang (taken from the Defects4J benchmark [45]). As
the example illustrates, software is complex and identifying root
causes of program failures is challenging. This section describes our
Causal Testing approach to computing and presenting developers
with information that can help identify root causes of failures.

Figure 3 describes the Causal Testing approach. Given a failing
test, Causal Testing conducts a series of causal experiments starting
with the original test suite. Causal Testing provides experimental
results to developers in the form of minimally-different passing and
failing tests, and traces of their executions.

3.1 Causal Experiments with Test Cases
Causal Testing modifies test cases to conduct causal experiments;
it observes system behavior and then reports the changes to test
inputs that cause system behavior to change. To create these test

Original failing test
assertTrue("createNumber(String) 9b failed", 0xFADE == NumberUtils.createNumber("0Xfade").intValue());

Perturb input(s)
0XFADE
0xfade
edafX0
0Xfad
Xfade
fade
…

Find similar
existing tests

Find similar
generated tests

Generate tests

Run tests

Collect trace
information

Compare inputs
0Xfade à 0xfade
0Xfade à 0XFADE
0Xfade à edafX
0Xfade à 0Xfad
0Xfade à Xfade
0Xfade à fade

Tests with
similar
inputs

Passing
w/ similar

traces

Compare executions
0Xfade 0xfade

createNumber() createNumber()
str.isBlank() str.startsWith()

… …

Passed Failed

Failing
w/ similar

traces
Aggregate and
display results

Figure 3: Causal Testing computes minimally-different test inputs
that, nevertheless, produce different behavior.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Brittany Johnson, Yuriy Brun, and Alexandra Meliou

case modifications and to then identify the modifications that lead
to behavioral change, Causal Testing needs a systematic way of
perturbing inputs and of measuring test case similarity, which
we describe in this section. Once the experiments are complete,
Causal Testing reports to the developer a list of minimally different
passing and failing test case inputs and their execution traces, to
help explain root causes of the failing behavior.

3.1.1 Perturbing Test Inputs. To conduct causal experiments, Causal
Testing starts with a failing test, which we shall call from now on
the original failing test, and identifies the class this test is testing.
Causal Testing considers all the tests of that class, and generates
more tests using automated test input generation (and the oracle
from the one failing test), to create a set of failing and passing
tests. Then, Causal Testing fuzzes these existing and generated test
inputs to find additional tests that exhibit expected and unexpected
behavior.

Theoretically, it is also possible for Causal Testing to perturb the
test oracle. For example, it might change the assertTrue in Figure 3 to
assertFalse. However, perturbing test oracles is unlikely to produce
meaningful information to guide the developer to the root cause, or,
at least, is likely to produce misleading information. For example,
making a test pass simply by changing the oracle does not provide
information about key differences in test inputs that alter software
behavior. As such, Causal Testing focuses on perturbing test inputs
only.

There are different ways Causal Testing could assemble sets of
passing and failing tests. First, Causal Testing could simply rely on
the tests already in the test suite. Second, Causal Testing could use
automated test generation [1, 26, 55] to generate a large number of
test inputs. Third, Causal Testing could use test fuzzing to change
the existing tests’ inputs to generate new, similar inputs. Fuzz test-
ing is an active research area [29, 30, 35, 42, 67] (although the term
fuzz testing is also used to mean simply generating tests [1]) and
has been applied in the security domain to stress-test an application
and automatically discover vulnerabilities, e.g., [30, 35, 67].

While in real-world systems, existing test suites often contain
both passing and failing tests, these suites are unlikely to have
similar enough pairs of one passing, one failing tests to provide
useful information about the root cause. Still, it is worthwhile
to consider these tests first, before trying to generate more. As
such, our solution to the challenge of generating similar inputs is
to (1) start with all existing tests, (2) use multiple fuzzers to fuzz
these tests, (3) generate many tests, and (4) filter those tests to
select the ones similar to the original failing test. As we observed
with Holmes, our proof-of-concept Causal Testing tool (described
in Section 4), using multiple input fuzzers provided a diverse set
of perturbations, increasing the chances that Causal Testing finds
a set of minimally-different inputs and that at least one of them
would lead to a passing execution.

3.1.2 Input Similarity. Given two tests that differ in their inputs
but share the same oracle, Causal Testing needs to measure the sim-
ilarity between the two tests, as its goal is to find pairs of minimally-
different tests that exhibit opposite behavior. Conceptually, to apply
the theory of causal inference, the two tests should differ in only
one factor. For example, imagine a software system that processes

apartment rental applications. If two application inputs are iden-
tical in every way except one entry, and the software crashes on
one but not on the other, this pair of inputs provides one piece
of evidence that the differing entry causes the software to crash.
(Other pairs that also only differ in that one entry would provide
more such evidence.) If the inputs differed in multiple entries, it
would be harder to know which entry is responsible. Thus, to help
developers understand root causes, Causal Testing needs to pre-
cisely measure input similarity. We propose two ways to measure
input similarity: syntactic differences and execution path differences.

Static Input Differences. The static input similarity can be
viewed at different scopes. First, inputs can agree in some and
differ in others of their arguments (e.g., parameters of a method
call). Agreement across more arguments makes inputs more similar.
Second, each argument whose values for the two tests differ can
differ to varying degrees. A measure of that difference depends
on the type of the argument. For arguments of type String, the
Levenshtein distance (the minimum number of single-character
edits required to change one String into the other) is a reasonable
measure, though there are others as well, such as Hamming distance
(difference between two values at the bit level). For numerical
arguments, their numerical difference or ratio is often a reasonable
measure.

We found that relatively simple measures of similarity suffice
for general debugging, and likely work well in many domains. Us-
ing Levenshtein or Hamming distance for Strings, the arithmetic
difference for numerical values, and sums of elements distances for
Arrays, worked reasonably well, in practice, on the 330 defects from
four different real-world systems we examined from the Defects4J
benchmark [45]. However, more generally, the semantics of sim-
ilarity measures are dependent on the domain. Some arguments
may play a bigger role than others, and the meaning of some types
may only make sense in the particular domain. For example, in
apartment rental applications, a difference in the address may play
a much smaller role than a difference in salary or credit history.
As such, how the similarity of each argument is measured, and
how the similarities of the different arguments are weighed are
specific to the domain and may require fine tuning by the developer,
especially for custom data types (e.g., project-specific Object types).
Still, in the end, we found that simple, domain-agnostic measures
worked well in the domains we examined.

Execution Path Differences. Along with static differences,
two inputs can differ based on their dynamic behavior at runtime.
One challenge when considering only static input differences is
that a statically similar input may not always yield an outcome
that is relevant to the original execution. For example, it is possible
that two inputs that differ in only one character lead to completely
incomparable, unrelated executions. Therefore, Causal Testing
also collects and compares dynamic information in the form of the
execution path the input causes.

Beyond simplistic ways to compare executions, such as by their
lengths, comparing the statements and method calls in each execu-
tion provides information we found helpful to understanding root
causes. This also strengthens the causal connection between the in-
put change and the behavior change; if two inputs’ executions, one
passing and one failing, only differ by one executed statement, it is
likely that one statement plays an important role in the behavioral

Causal Testing: Understanding Defects’ Root Causes ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

change. Augmenting method calls with their return values provides
additional insights in situations where the bug is evident not by the
sequence of statements executed but in the use of a method that
returns an unexpected value.

Both static and execution path measures of similarity can be
useful in identifying relevant tests that convey useful information
to developers. Inputs that are similar both statically and in terms of
execution paths hold potential to convey even more useful informa-
tion, as they have even fewer differences with the original failing
test. Therefore, Causal Testing prioritizes tests whose inputs are
statically and dynamically similar to the original failing test.

3.2 Communicating Root Causes to Developers
After generating and executing test inputs, Causal Testing ranks
them by similarity and selects a user-specified target number of
the most similar passing test cases. In our experience, three tests
was a good target, though, at times, a time-out was necessary
because finding three similar passing tests was computationally
infeasible. Causal Testing reports tests as it finds them, produce
results for the developer as quickly as possible, while it performs
more computation, looking for potentially more results.

Causal Testing collects the input and the execution traces for
each test it executes. These are, of course, used for determining
test case similarity, but also hold the key information in terms of
what differences in test inputs lead to what behavioral changes. For
the pairs of failing and passing tests, Causal Testing presents the
static differences in inputs, and the execution traces (along with
each method call’s arguments and return values) with differences
highlighted. Because execution traces can get large, parsing them
can be difficult for developers; showing differences in the traces
simplifies this task. Causal Testing displays a minimized trace,
focused on the differences.

4 HOLMES: A CAUSAL TESTING PROTOTYPE
We have implemented Holmes, an open source Eclipse plug-in
Causal Testing prototype. Holmes is available at http://holmes.cs.
umass.edu/ and consists of four components: input and test case
generators, edit distance calculators & comparers, a test executor &
comparator, and an output view.

4.1 Input & Test Case Generation
Holmes first task is to create a set of candidate test cases. Holmes
first searches all tests in the current test suite for tests that are
similar to the original failing test using stringmatching to determine
if two tests are similar. More specifically, Holmes converts the entire
test file to a string and parses it line by line. This is an approximation
of test similarity. Future work can improve Holmes by considering
similarity in dynamic execution information between the two tests,
or by creating new tests by using test inputs from other tests but
the oracle from the original failing test.

Next, Holmes proceeds to generate new tests. Holmes gets new
inputs for generating new tests in two ways:

• Test case generation. Holmes uses an existing test case
generation tool, EvoSuite [26]. We chose EvoSuite because
it is a state-of-the-art, open-source tool that works with Java

and JUnit. Holmes determines the target class to generate
tests from based on the class the original failing test tests.
For example, if the original failing test is called NumberUtilsTest,
Holmes tells EvoSuite to generate tests for NumberUtils. To
determine if a test is related to the original failure, Holmes
searches the generated tests for test cases that call the same
method as the original test. From this process, Holmes will
get at least one valid input to use during fuzzing.

• Input fuzzing. To generate additional inputs for new tests,
Holmes fuzzes existing and generated test inputs. Holmes
uses two off-the-shelf, open-source fuzzers, Peach2 and
Fuzzer3. To increase the chances that fuzzed inputs will
produce passing tests, Holmes prioritizes (when available)
inputs from passing tests. Holmes fuzzes the original in-
put and all valid inputs from generated test cases, again to
increase the chance of finding passing tests.

Once Holmes runs test generation and fuzzes the valid inputs,
the next step is to determine which of the generated inputs are
most similar to the original.

4.2 Test Execution & Edit Distance Calculation
The current Holmes implementation uses static input similarity to
identify minimally-different tests. Using only static input similarity
first provided us with a better understanding of how execution
information could be collected and used most effectively. In the user
study described in Section 5, we semi-automated using dynamic
execution trace information for evaluating Holmes. Future work
can improve Holmes by automatically using dynamic execution
trace information, as described in Section 3.1.2.

To evaluate static input differences, Holmes first determines
the data type of each argument in the method-under-test; this
determines how Holmes will calculate edit distance. For arguments
with numerical values, Holmes calculates the absolute value of the
arithmetic difference between the original and generated test input
argument. For example, inputs 1.0 and 4.0 have an edit distance
of 3.0. For String and char inputs, Holmes uses two different metrics.
First, Holmes determines the Hamming distance between the two
arguments. We elected to use Hamming distance first because
we found it increases the accuracy of the similarity measure for
randomly generated inputs. Once Holmes identifies inputs that
are similar using the Hamming distance, it uses the Levenshtein
distance to further refine its findings; inputs that require the fewest
character changes to change from one to the other are most similar.
Holmes uses an edit distance threshold of 3; tests whose inputs are
more than a Levenshtein distance of 3 away from the original failing
tests are considered too different to be reported to the developer.

Holmes uses the executed test behavior to determine which in-
puts satisfy the original failing test’s oracle. Then, Holmes attempts
to further minimize the test differences by, for each original argu-
ment, iteratively replacing the original value with new input value
and executing the modified test to observe if the oracle is satisfied.
Holmes iterates to try to find three similar passing tests to compare
to the failing one.

2https://github.com/MozillaSecurity/peach
3https://github.com/mapbox/fuzzer

http://holmes.cs.umass.edu/
http://holmes.cs.umass.edu/
https://github.com/MozillaSecurity/peach
https://github.com/mapbox/fuzzer

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Brittany Johnson, Yuriy Brun, and Alexandra Meliou

4.3 Communicating Root Causes to Developers
An important consideration when building a tool is how it will
communicatewith the developer [39]. OnceHolmes has computed a
set of passing (and a set of failing) tests, it organizes the information
for presentation. Holmes organizes tests by whether it passes or
fails, showing the original failing test at the top of the output
window, making it easy to compare the differences. Under each
test, Holmes presents a minimized test execution trace. So as to not
overwhelm the developer with information, Holmes’ user interface
includes the option to toggle showing and hiding trace information.

4.4 Holmes’ Limitations
We implemented Holmes as a prototype Causal Testing tool, to be
used in a controlled experiment with real users (see Section 5). We
have thus prioritized ensuring Holmes implements the aspects of
Causal Testing we needed to evaluate, over fully automating it.

The current version of Holmes automates test generation, exe-
cution, and static edit distance calculation. We used InTrace [36] to
collect runtime execution traces and then manually incorporated
the execution information with the tests. Future versions of Holmes
will automate the dynamic trace collection and comparison.

The current version of Holmes relies on the Defects4J bench-
mark [45] used in our evaluations, and extending it to other defects
may require extending Holmes or setting those defects’ projects
up in a particular way. For simplicity, Holmes works on single-
argument tests with String or primitive arguments. While this is
sufficient for the defects in Defects4J benchmark, this limitation
will need to be lifted for tests with multiple arguments. Our Holmes
prototype implementation is open-source, to allow others to build
on it and improve it.

5 CAUSAL TESTING EFFECTIVENESS
We designed a controlled user study experiment with 37 developers
to answer the following three research questions:
RQ1: Does Causal Testing improve the developers’ ability to iden-

tify the root causes of defects?
RQ2: Does Causal Testing improve the developers’ ability to repair

defects?
RQ3: Do developers find Causal Testing useful, and, if so, what

aspect of Causal Testing is most useful?

5.1 User Study Design
Causal Testing’s goal is to help developers determine the cause of
a test failure, thereby helping developers better understand and
eliminate defects from their code. We designed our user study
and prototype version of Holmes to provide evidence of Causal
Testing’s usefulness, while also providing a foundation of what
information is useful for Causal Testing.

We randomly selected seven defects from Defects4J, from the
Apache Commons Lang project. We chose Apache Commons Lang
because it (1) is the most widely known project in Defects4J, (2) had
defects that required only limited domain knowledge, and (3) can
be developed in Eclipse.

Our user study consisted of a training task and six experimen-
tal tasks. Each task mapped to one of the seven defects. Each
participant started with the training task, and then performed six

experimental tasks. The training task and three of the experimental
tasks used Holmes and the other three experimental tasks belonged
to the control group and did not include the use of Holmes. The
order of the tasks, and which tasks were part of the control group
and which part of the experimental group were all randomized.

For the training task, we provided an Eclipse project with a
defective code version and single failing test. We explained how
to execute the test suite via JUnit, and how to invoke Holmes. We
allowed participants to explore the code and ask questions, telling
them that the goal is to change the code so that all that tests pass.
Each task that followed was similar to the training task; control
group tasks did not have access to Holmes, experimental group
tasks did.

We recorded audio and the screen for later analysis. We asked
participants to complete a causality questionnaire after each task
consisting of two questions: “What caused Test X to fail?” and
“What changes did you make to fix it?”

At then end, the participants completed an exit survey with
open-ended questions, such as “What information did you find
most helpful when determining what caused tests to fail?” and
4-point Likert scale questions, such as “How useful did you find
X?” For the Likert-scale questions, we gave participants the options
“very useful”, “somewhat useful”, “not useful”, and “misleading or
harmful”. We also gave participants an opportunity to provide
additional feedback they saw fit.

Prior to our experiment, we conducted a pilot of our initial user
study design with 23 students from a graduate software engineering
course. Our pilot study consisted of 5 tasks and a mock-up version
of Holmes. We used lessons learned and challenges encountered
to finalize the design of our study. The 23 pilot participants did
not participate in the final study presented here. All final study
materials are available online at http://holmes.cs.umass.edu in the
user_study_materials directory.

5.2 Participants
We recruited a total of 39 participants from industry and academia:
15 undergraduate students, 12 PhD students, 9 Masters students,
2 industry developers, and 1 research scientist. Participants’ pro-
gramming experience ranged from 1 to 30 years and experience
with Java ranged from a few months to 15 years. All participants
reported having prior experience with Eclipse and JUnit. We ana-
lyzed data from 37 participants; 2 undergraduate participants (P2
and P3) did not follow the instructions, so we removed them from
our dataset.

5.3 User Study Findings
We now summarize the results from our study.

RQ1: Does Causal Testing improve the developers’ ability to
identify the root causes of defects?

The primary goal of Causal Testing is to help developers identify
the root cause of test failures. To answer RQ1, we analyzed the
responses participants gave to the question “What caused Test X
to fail?” We marked responses as either correct (captured full and
the true cause) or incorrect (missing part or all of the true cause).

Figure 4 shows the root cause identification correctness results.
When using Holmes, developers correctly identified the cause 86%

http://holmes.cs.umass.edu

Causal Testing: Understanding Defects’ Root Causes ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Defect Group Correct Incorrect Total

1 Control 17 (89%) 2 (11%) 19
Holmes 17 (94%) 1 (5%) 18

2 Control 12 (60%) 8 (40%) 20
Holmes 9 (53%) 8 (47%) 17

3 Control 19 (95%) 1 (5%) 20
Holmes 16 (94%) 1 (6%) 17

4 Control 15 (83%) 3 (17%) 18
Holmes 18 (95%) 1 (5%) 19

5 Control 13 (87%) 2 (13%) 15
Holmes 21 (95%) 1 (5%) 22

6 Control 12 (67%) 6 (33%) 18
Holmes 15 (79%) 4 (21%) 19

Total Control 88 (80%) 22 (20%) 110
Holmes 96 (86%) 16 (14%) 112

Figure 4: Distributions of correct and incorrect cause descriptions,
per defect.

Average Resolution Time (in minutes)
Defect: 1 2 3 4 5 6

Control 16.5 10.6 6.8 12.9 3.7 10.0
Holmes 17.0 12.7 6.4 17.7 4.9 10.1

Figure 5: The average time developers took to resolve the defects, in
minutes.

of the time (96 out of 112 times). The control group only identi-
fied the cause 80% of the time (88 out of 110). Fisher’s exact test
finds that these samples come from different distributions with 83%
probability (p = 0.17).

For four of the six defects, (Defects 1, 4, 5, and 6), developers
using Holmes were more accurate when identifying root causes
than the control group. For Defects 1, 4, and 5, participants only
incorrectly identified the cause approximately 5% of the time when
using Holmes, compared to 11–17% of the time without Holmes. For
Defect 6, participants with Holmes identified the correct cause 79%
(15 out of 19) of the time; without Holmes they could only identify
the correct cause 67% (12 out of 18) of the time. Our findings suggest
that Causal Testing supports and improves developer ability
to understand root causes, for at least some defects.

RQ2: Does Causal Testing improve the developers’ ability to
repair defects?

While Causal Testing’s main goal is to help developers under-
stand the root cause, this understanding may be helpful in removing
the defect as well. To answer RQ2, we analyzed participants’ re-
sponses to the question “What changes did you make to fix the
code?” We used the same evaluation criteria and labeling as for
RQ1. To determine if causal execution information improves devel-
opers’ ability to debug and repair defects, we observed the time it
took participants to complete each task and the correctness of their
repairs.

Defect Group Correct Incorrect Total

1 Control 16 (89%) 2 (11%) 18
Holmes 12 (86%) 2 (14%) 14

2 Control 12 (100%) 0 (0%) 12
Holmes 7 (100%) 0 (0%) 7

3 Control 19 (100%) 0 (0%) 19
Holmes 16 (100%) 0 (0%) 16

4 Control 15 (100%) 0 (0%) 15
Holmes 19 (100%) 0 (0%) 19

5 Control 12 (86%) 2 (14%) 14
Holmes 21 (95%) 1 (5%) 22

6 Control 6 (75%) 2 (25%) 8
Holmes 5 (100%) 0 (0%) 5

Total Control 80 (93%) 6 (7%) 86
Holmes 80 (96%) 3 (4%) 83

Figure 6: Distribution of correct and incorrect repairs implemented
by participants, per defect.

Figure 5 shows the average time it took developers to repair each
defect. We omitted times for flawed repair attempts that do not
address the defect. On average, participants took more time with
Holmes on all but one defect (Defect 3). One explanation for this
observation is that while Holmes helps developers understand the
root cause, this understanding takes time, which can reduce the
overall speed of repair.

Figure 6 shows repair correctness results. When using Holmes,
developers correctly repaired the defect 96% of the time (80 out of
83) while the control group repaired the defect 93% of the time (80
out of 86).

For two of the six defects (Defects 5 and 6), developers us-
ing Holmes repaired the defect correctly more often (Defect 5:
95% vs. 86%; Defect 6: 100% vs. 75%). For Defects 2, 3, and 4, devel-
opers repaired the defect correctly 100% of the time both with and
without Holmes. For one defect (Defect 1), developers with Holmes
were only able to repair the defect correctly 86% (12 out of 14) of
the time while developers without Holmes correctly fixed defects
100% of the time.

Holmes did not demonstrate an observable advantage when
repairing defects. Our findings suggest thatCausal Testing some-
times helps developers repair defects, but neither consistent-
ly nor statistically significantly.

RQ3: Do developers find Causal Testing useful, and, if so,
what aspect of Causal Testing is most useful?

To answer RQ3, we analyzed post-evaluation survey responses
to the question asking which information was most useful when
understanding and debugging the defects. We extracted and ag-
gregated quantitative and qualitative results regarding information
most helpful when determining the cause of and fixing the defects.
We also analyzed the Likert-scale ratings regarding the usefulness of
JUnit and the various components of causal execution information.

Overall, participants found the information provided by Holmes
more useful than other information available when understanding
and debugging the defects. Out of 37 participants, 17 (46%) found

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Brittany Johnson, Yuriy Brun, and Alexandra Meliou

the addition of at least one aspect of Holmes more useful than
output provided by JUnit alone. Further, 15 (41%) participants found
the addition of Holmes at least as useful as JUnit. The remaining
5 (13%) found the addition of Holmes not as useful as JUnit alone.
Though majority of participants found Holmes’ output more useful,
JUnit and interactive debuggers are an important part of debugging.
Therefore, our expectations would be that Causal Testing would
augment those tools, not replace them.

Participants found the minimally-different passing tests Holmes
provided the most useful: 20 out of 37 participants (54%) rated this
piece of information as “Very Useful.” The passing and failing test
inputs that Holmes provided received “Very Useful” or “Useful”
rankings more often than the test execution traces. Finally, 18
participants marked either the passing or failing execution trace
as “Not Useful.” One participant felt the passing test traces were
“Misleading or Harmful;” during their session, they noted that they
felt in some cases the execution paths were not as similar as others,
which made interpreting the output more confusing.

To gain a better understanding of what parts of causal execution
information aremost useful, andwhy, we also analyzed participants’
qualitative responses to the questions asked in our post-evaluation
questionnaire.

What information did you find most helpful when determining what
caused tests to fail? Overall, 21 participants explicitly mentioned
some aspect of Holmes as being most helpful. For 6 of these partici-
pants, all the information provided by Holmes was most helpful for
cause identification. Another 8 participants noted that specifically
the similar passing and failing tests were most helpful. For example,
P36 stated these similar tests when presented “side by side” made
it “easy to catch a bug.”

The other 6 participants stated the execution traces were most
helpful. One participant’s response said that the parts of Holmes
output that were most helpful was the output “showing method
calls, parameters, and return values.” This was particularly true
when there were multiple method calls in an execution according
to P26: “it was useful to see what was being passed to them and
what they were returning.”

What information did you find most helpful when deciding changes to
make to the code? Overall, 14 participants mentioned some aspect of
Holmes as being most helpful. Of these, 5 explicitly stated that the
similar passing tests were most helpful of the information provided
by Holmes. P7, who often manually modified failing tests to better
understand expected behavior noted “it helped to see what tests
were passing,” which helped him “see what was actually expected
and valid.”

For the other 4 participants, the execution traces were most help-
ful for resolving the defect. One participant specifically mentioned
that the return values in the execution traces for passing and failing
inputs were most helpful because then he could tell “which parts
are wrong.”

Would you like to add any additional feedback to supplement your
responses? Many participants used this question as an opportunity
to share why they thought Holmes was useful. Many reported
comments such as “Holmes is great!” and “really helpful.” For many,
Holmes was most useful because it provided concrete, working

examples of expected and non-expected behavior that help with
“pinpointing the cause of the bug.”

A participant noted that without Holmes, they felt like it was
“a bit slower to find the reason why the test failed.” Another par-
ticipant noted that the trace provided by Holmes was “somewhat
more useful” than the trace provided by JUnit.

In free-form, unprompted comments throughout the study, par-
ticipants often mentioned that the passing and failing tests and
traces were useful for their tasks; several participants explicitly
mentioned during their session that having the additional passing
and failing tests were “super useful” and saved them time and effort
in understanding and debugging the defect.

While the qualitative feedback is largely positive, it is impor-
tant to point out that we do not view Causal Testing tools as a
replacement for JUnit. The intent is for them to complement each
other and help developers understand and debug software behav-
ior. Three participants explicitly mentioned that Holmes is most
useful in conjunction with JUnit and other tools available in the
IDE. Several participants highlighted the complementary nature of
these tools. For example, P26 explained that though Holmes was
“very useful when debugging the code,” it is most useful with other
debugging tools as “it does not provide all information.”

Finally, participants also suggests ways to improve Holmes. One
participant mentioned that Holmes should add the ability to click
on the output and jump to the related code in the IDE. Another
suggested making the differences between the passing and failing
tests visibly more explicit. Three participants explicitly suggested,
rather than bolding the entire fuzzed input, only bolding the parts
that are different from the original failing test. Our findings suggest
thatCausal Testing is useful for both cause identification and
defect resolution, and is complementary to other debugging
tools.

6 CAUSAL TESTING APPLICABILITY TO
REAL-WORLD DEFECTS

To evaluate the usefulness and applicability of Causal Testing to real-
world defects, we conducted an evaluation on the Defects4J bench-
mark [45]. Defects4J is a collection of reproducible defects found in
real-world, open-source Java software projects: Apache Commons
Lang, Apache Commons Math, Closure compiler, JFreeChart, and
Joda-Time. For each defect, Defects4J provides a buggy version and
fixed version of the source code, along with the developer-written
test suites, which include one or more tests that fail on the buggy
version but pass on the fixed version.

We manually examined 330 defects in four of the five projects in
the Defects4J benchmark and categorized them based on whether
Causal Testing would work and whether it would be useful in
identifying the root cause of the defect. We excluded Joda-Time
from our analysis because of difficulty reproducing the defects.4

6.1 Evaluation Process
To determine applicability of Causal Testing to defects in the De-
fects4J benchmark, we first imported the buggy version and fixed
version into Eclipse. We then executed the developer-written test

4Some such difficulties have been documented in the Joda-Time issue tracker:
https://github.com/dlew/joda-time-android/issues/37.

https://github.com/dlew/joda-time-android/issues/37

Causal Testing: Understanding Defects’ Root Causes ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

suites on the buggy version to identify the target failing tests and
the methods they tested.

Once we identified the target failing tests and methods under
test, we ran Holmes using the target failing tests. If Holmes ran and
produced causal test pairs, we ran InTrace to produce execution
traces. Sometimes, Holmes was unable to produce an output. In
these cases, we attempted to evaluate if a more mature version of
Holmes could have produced an output. To do this, we manually
made small perturbations to the test inputs in an attempt to produce
reasonably similar passing tests. We made perturbations based on
the type of input and how a more mature Causal Testing tool would
work. For example, if the test input was a number, we made small
changes such as adding and subtracting increments of one from
the original value or making the number positive or negative. We
then executed the tests and attempted to produce causal test pairs.

In cases where Holmes or our manual analysis was able to pro-
duce similar passing tests, we next determined if this information
could be useful for understanding the root cause of that defect.
To do this, we first used the fixed version to determine what we
believed to be the root cause. If we were able to determine the
root cause, we then made a determination on whether the similar
passing tests and execution information would help developers
understand the root cause and repair the defect.

We used this process and the produced information to categorize
the defects, as we describe next.

6.2 Defect Applicability Categories
We categorized Causal Testing’s applicability to each defect into
the following five categories:

I. Works, useful, and fast. For these defects, Causal Testing
can produce at least one minimally-different passing test
that captures its root cause. We reason Causal Testing would
be helpful to developers. In our estimate, the difference
between the failing and minimally-different passing tests
is reasonably small that it can be found on a reasonable
personal computer, reasonably fast. For most of these defects,
our existing Holmes implementation was able to produce
the useful output.

II. Works, useful, but slow. For these defects, Causal Testing
can produce at least one minimally-different passing test
that captures its root cause, and this would be helpful to
developers. However, the difference between the tests is
large, and, in our estimation, Causal Testing would need
additional computation resources, such as running overnight
or access to cloud computing. For most of these defects, our
current Holmes implementation was unable to produce the
necessary output, but a more mature version would.

III. Works, but is not useful. For these defects, Causal Test-
ing can produce at least one minimally different passing
test, but in our estimation, this test would not be useful to
understanding the root cause of the defect.

IV. Will not work. For these defects, Causal Testing would not
be able to perturb the tests, and would tell the developer it
cannot help right away.

V. Wecould notmake a determination. Because the defects
in our study are from real-world projects, some required

Applicability Category
Project I II III IV V Total

Math 14 15 11 20 46 106
Lang 11 6 3 14 31 65
Chart 2 4 1 1 18 26
Closure 2 22 8 5 96 133

Total 29 47 23 40 191 330

Figure 7: Distribution of defects across five applicability categories
described in Section 6.2.

project-specific domain knowledge to understand. As we
are not the original projects’ developers, for these defects,
the lack of domain-specific knowledge prevented us from
understanding what information would help developers un-
derstand the root cause and debug, and we elected not to
speculate. As such, we opted not to make an estimation of
whether Causal Testing would be helpful for these defects.

6.3 Results
Figure 7 shows our defect classification results. Of the 330 defects,
we could make a determination for 139. Of these, Causal Testing
would try to produce causal test pairs for 99 (71%). For the re-
maining 40 (29%), Causal Testing would simply say it cannot help
and would not waste the developer’s time. Of these 99 defects, for
76 (77%), Causal Testing can produce information helpful in iden-
tifying the root cause. For 29 (29%), a simple local IDE-based tool
would work, and for 47 (47%), a tool would need more substantial
resources, such as running overnight or on the cloud. The remain-
ing 23 (23%) would not benefit from Causal Testing. Our findings
suggest that Causal Testing produces results for 71% of real-
world defects, and for 77% of those, it can help developers
identify and understand the root cause of the defect.

7 DISCUSSION
Our findings suggest that Causal Testing can be useful for under-
standing root causes and debugging defects. This section discusses
implications of our findings, as well as threats to the validity of our
studies and limitations of our approach.

Encapsulating causality in generated tests. Our user study
found that having passing and failing tests that are similar to the
original failin test that exposed a defect are useful for understanding
and debugging software defects, though not all defects. Participants
found the passing tests that provided examples of expected behavior
useful for understandingwhy a test failed. This suggests that Causal
Testing can be used to generate tests that encapsulate causality in
understanding defective behavior, and that an important aspect
of debugging is being able to identify expected behavior when
software is behaving unexpectedly.

Execution information for defect understanding & repair.
Execution traces can be useful for finding the location of a de-
fect [20], and understanding software behavior [10–14, 28, 46, 53].
Our study has shown that such traces can also be useful for under-
standing root causes of defects, and, in some cases, can highlight
these root causes explicitly. Participants in our study found com-
paring execution traces useful for understanding why the test was

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Brittany Johnson, Yuriy Brun, and Alexandra Meliou

failing and how the code should behave differently for a fix. For
some participants, the execution trace information was the most
useful of all information provided. These results support further
use of execution traces when conducting causal experiments.

Causal Testing as a complementary testing technique. Our
findings support Causal Testing as a complement to existing debug-
ging tools, such as JUnit. Understandably, participants sometimes
found themselves needing information that Holmes does not pro-
vide, especially once they understood the root cause and needed
to repair the defect. Our findings suggest that Causal Testing is
most useful for root cause identification. Still, a majority of the
participants in our study found Holmes useful for both cause iden-
tification and defect repair, despite, on average, taking longer to
resolve defects with Holmes. We speculate that increased familiar-
ity with Causal Testing would improve developers’ ability to use
the right tool at the right time, improving debugging efficiency, as
supported by prior studies [39].

Supporting developers with useful tools. The goal of soft-
ware development tools is often to decrease developer effort, such
that developers will want to use that tool in practice. However,
research suggests that the first thing practitioners consider when de-
ciding whether to use a given tool is that tool’s usefulness [59]. Our
study shows that participants often took more time to debug when
using Holmes; however, despite this and other challenges develop-
ers encountered, participants still generally found Holmes useful
for both understanding and debugging defects. This suggests that
an important part of evaluating a tool intended for developer use is
whether the tool provides useful information in comparison to, or in
our case, along with, existing tools available for the same problem.

7.1 Threats to Validity
External Validity. Our studies used Defects4J defects, a collec-
tion of curated, real-world defects. Our use of this well-known
and widely-used benchmark of real-world defects aims to ensure
our results generalize. We selected defects for the user study ran-
domly from those that worked with our current implementation of
Holmes and that required little or no prior project or domain knowl-
edge, with varying levels of difficulty. The applicability evaluation
considered all defects across four projects.

The user study used 37 participants, which is within range of
higher data confidence and is above average for similar user stud-
ies [9, 25, 50, 62]. Our study also relied on participants with different
backgrounds and experience.

Internal Validity. Our user study participants were volunteers.
This leads to the potential for self-selection bias. We were able to
recruit a diverse set of participants, somewhat mitigating this threat.

Construct Validity. Part of our analysis of whether Causal
Testing would apply and be useful for debugging specific defects
was manual. This leads to the potential for researcher bias. We
minimized this threat by developing and following concrete, repro-
ducible methodology and criteria for usefulness.

The user study asked participants to understand and debug code
they had not written, which may not be representative of a sitation
in which developers are debugging code they are familiar with (but
is representative of a common scenario of developers debugging
others’ code). We aimed to select defects for the study that required

little project and domain knowledge. Additionally, we did not
disclose the true purpose of the user study to the subjects until after
the end of each participant’s full session.

7.2 Limitations and Future Work
Causal Testing mutates tests’ inputs while keeping the oracles
constant (recall Section 3.1.1). This process makes an implicit as-
sumption that small perturbations of the inputs should not affect
the expected behavior, and, thus, if small perturbations do affect
the behavior, knowing this information is useful to the developer
for understanding the root cause of why the faulty behavior is
taking place. This assumption is common in many domains, such
as testing autonomous cars [66] and other machine-learning-based
systems [57]. However, it also leads Causal Testing limitations. In
particular, some changes to the inputs do affect expected behavior,
and using the unmodified oracle will not be valid in these cases.
This can lead Causal Testing to generate pairs of tests that do not
capture causal information about the expected behavior properly.
For example, it could produce a test that passes but that uses the
wrong oracle and should, in fact, fail. It remains an open question
whether such tests would be helpful for understanding root causes.
The causal test pair still indicates what minimal input change can
satisfy the oracle, which might still be useful for developers to un-
derstand the root causes, even if the passing test does not properly
capture the expected behavior.

Future work could extend Causal Testing to include oracle mu-
tation. A fruitful line of research, when specifications, formal or
informal, are available, is to extract oracles from those specifica-
tions. For example, Swami [49] can extract test oracles (and gen-
erate tests) from structured, natural language specifications, and
Toradacu [31], Jdoctor [15], and @tComment [65] can do so from
Javadoc specifications. Behavioral domain constraints [2, 4, 27],
data constraints [23, 51, 52], or temporal constraints [11, 12, 14, 22,
53] can also act as oracles for the generated tests.

By fuzzing existing tests and focusing on test inputs that are
similar to the original failing test, Causal Testing attempts to miti-
gate the risk that the tests’ oracle will not apply. In a sense, a test’s
inputs must satisfy a set of criteria for the oracle to remain valid,
and by modifying the inputs only slightly (as defined by static or
dynamic behavior), our hope is that in sufficiently many cases, these
criteria will not be violated. Future work could consider implement-
ing oracle-aware fuzzing that modifies inputs while specifically
attempting to keep the oracle valid.

In some cases, it may not be possible to generate passing tests
by generating new tests. For example, code that never throws an
exception cannot have a test pass if that test’s oracle expects the
exception to be thrown. In such cases, Causal Testing will not
produce false positive results for the developer, and will simply say
no causal information could be produced.

Our studies have identified that Causal Testing is often, but not
always, helpful. Future work can examine properties of defects or
tests for which Causal Testing is more effective at producing causal
information, and for which that causal information is more helpful
to developers. This information can, in turn, be used to improve
Causal Testing.

Causal Testing: Understanding Defects’ Root Causes ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

8 RELATEDWORK
The closest work to Causal Testing is BugEx [60], which is also in-
spired by counterfactual causality. Given a failing test, BugEx uses
runtime information, such as whether a branch is taken, to find pass-
ing and failing tests that differ with respect to that piece of informa-
tion. Darwin [58] targets regression failures and uses concrete and
symbolic execution to synthesize new tests such that each test dif-
fers in control flow when executed on the buggy and the non-buggy
version of the code. By contrast, Causal Testing requires only a sin-
gle version of the code, and only a single failing test, and generates
pairs of tests that differ minimally either statically or dynamically
(or both) to help developers understand the root cause of the defect.

Delta debugging [73, 74] aims to help developers understand the
cause of a set of failing tests. Given a failing test, the underlying
ddmin algorithmminimizes that test’s input such that removing any
other piece of the test makes the test pass [34]. Delta debugging can
also be applied to a set of test-breaking code changes to minimize
that set, although in that scenario, multiple subsets that cannot be
reduced further are possible because of interactions between code
changes [64, 74]. By contrast, Causal Testing does not minimize
an input or a set of changes, but rather produces other inputs
(not necessarily smaller) that differ minimally but cause relevant
behavioral changes. The two techniques are likely complementary
in helping developers debug.

When applied to code changes, delta debugging requires a correct
code version and a set of changes that introduce a bug. Iterative
delta debugging does not need the correct version, using the version
history to produce a correct version [5]. Again, Causal Testing is
complementary, though future work could extend Causal Testing
to consider the development history to guide fuzzing.

Fault localization (also known as automated debugging) is con-
cerned with locating the line or lines of code responsible for a
failing test [3, 41, 70]. Spectral fault localization uses the frequency
with which each code line executes on failing and passing tests
cases to identify the suspicious lines [21, 41]. When tests (or fail-
ing tests) are not available, static code elements or data about the
process that created the software can be used to locate suspicious
lines [47, 48]. Accounting for redundancy in test suites can im-
prove spectral fault localization precision [32, 33]. MIMIC can
also improve fault localization precision by synthesizing additional
passing and failing executions [75], and Apollo can do so by gen-
erating tests to maximize path constraint similarity [6]. Statistical
causal inference uses observational data to improve fault localiza-
tion precision [7, 8]. Importantly, while statistical causal inference
aims to infer causality, it does not apply the manipulationist ap-
proach [71] that Causal Testing uses; as a result, Causal Testing can
make more powerful statements about the causal relationships it
discovers. Unfortunately, research has shown that giving develop-
ers the ground truth fault location (even from state-of-the-art fault
localization techniques) does not improve the developers’ ability
to repair defects [56], likely because understanding defect causes
requires understanding more code than just the lines that need to
be edited. By contrast, Causal Testing discovers the changes to soft-
ware inputs that cause the behavioral differences, and a controlled
experiment has shown promise that Causal Testing positively af-
fects the developers’ ability to understand defect causes.

Mutation testing targets a different problem than Causal Testing,
and the approaches differ significantly. Mutation testing mutates
the source code to evaluate the quality of a test suite [43, 44]. Causal
Testing does not mutate source code (it perturbs test inputs) and
helps developers identify root causes of defects, rather than improve
test suites (although it does generate new tests.) In a special case
of Causal Testing, when the defect being analyzed is in software
whose input is a program (e.g., compiler), Causal Testing may rely
on code mutation operators to perturb the inputs.

Reproducing field failures [37] is an important part of debugging
complementary to most of the above-described techniques, includ-
ing Causal Testing, which require a failing test case. Field failures
often tell more about software behavior than in-house testing [69].

Fuzz testing is the process of changing existing tests to generate
more tests [29, 30] (though, in industry, fuzz testing is often synony-
mous with automated test input generation). Fuzz testing has been
used most often to identify security vulnerabilities [30, 67]. Fuzzing
can be white-box, relying on the source code [30] or black-box,
relying only on the specification or input schema [42, 67]. Causal
Testing uses fuzz testing and improvements to fuzz testing research
can directly benefit Causal Testing by helping it to find similar
test inputs that lead to different behavior. Fuzzing can be used
on complex inputs, such as programs [35], which is necessary to
apply Causal Testing to software with such inputs (as is the case
for Closure, one of the subject programs we have studied). Fuzz
testing by itself does not provide the developer with information to
help understand defects’ root causes, though the failing test cases
it generates can certainly serve as a starting point.

The central goal of automated test generation (e.g., EvoSuite [26],
and Randoop [55]) and test fuzzing is finding new failing test cases.
For example, combining fuzz testing, delta debugging, and tradi-
tional testing can identify new defects, e.g., in SMT solvers [17].
Automated test generation and fuzzing typically generate test in-
puts, which can serve as regression tests [26] or require humans
to write test oracles. Without such oracles, one cannot know if
the tests pass or fail. Recent work on automatically extracting test
oracles from code comments can help [15, 31, 65]. Differential test-
ing can also produce oracles by comparing the executions of the
same inputs on multiple implementations of the same specifica-
tion [16, 19, 24, 61, 63, 72]. Identifying defects by producing failing
tests is the precursor to Causal Testing, which uses a failing test to
help developers understand the defects’ root cause.

9 CONTRIBUTIONS
We have presented Causal Testing, a novel method for identifying
root causes of software defects that supplements existing testing
and debugging tools. Causal Testing is applicable to 71% of real-
world defects in the Defects4J benchmark, and for 77% of those, it
can help developers identify the root cause of the defect. Developers
using Holmes, a proof-of-concept implementation of Causal Testing,
were more likely to correctly identify root causes than without
Holmes (86% vs. 80% of the time). Majority of developers who used
Holmes found it most useful when attempting to understand why
a test failed and in some cases how to repair the defect. Overall,
Causal Testing shows promise for improving the debugging process,
especially when used together with other debugging tools.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Brittany Johnson, Yuriy Brun, and Alexandra Meliou

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
grants no. CCF-1453474, IIS-1453543, and CCF-1744471, and by
Google and Oracle Labs.

REFERENCES
[1] AFL 2018. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[2] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2018. Automated test generation to detect individual discrimination in AI models.
CoRR abs/1809.03260 (2018), 1–8. https://arxiv.org/abs/1809.03260

[3] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. 1995. Fault
localization using execution slices and dataflow tests. In International Symposium
on Software Reliability Engineering (ISSRE). Toulouse, France, 143–151. https:
//doi.org/10.1109/ISSRE.1995.497652

[4] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis:
Automatically testing software for discrimination. In European Software Engi-
neering Conference and ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE) Demonstration track (6–9). Lake Buena Vista,
FL, USA, 871–875. https://doi.org/10.1145/3236024.3264590

[5] Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223–246. https://doi.org/10.1007/978-
3-642-01702-5_13

[6] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. 2010. Directed test
generation for effective fault localization. In International Symposium on Software
Testing and Analysis (ISSTA). Trento, Italy, 49–60. https://doi.org/10.1145/1831708.
1831715

[7] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2010. Causal inference
for statistical fault localization. In International Symposium on Software Test-
ing and Analysis (ISSTA). Trento, Italy, 73–84. https://doi.org/10.1145/1831708.
1831717

[8] George K. Baah, Andy Podgurski, and Mary Jean Harrold. 2011. Mitigating
the confounding effects of program dependences for effective fault localization.
In European Software Engineering Conference and ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE). Szeged, Hungary,
146–156. https://doi.org/10.1145/2025113.2025136

[9] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. 2016.
From quick fixes to slow fixes: Reimagining static analysis resolutions to enable
design space exploration. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). Raleigh, NC, USA, 211–221. https://doi.org/
10.1109/ICSME.2016.63

[10] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D. Ernst. 2011.
Synoptic: Studying logged behavior with inferred models. In European Software
Engineering Conference and ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (ESEC/FSE) Demonstration track (5–9). Szeged,
Hungary, 448–451. https://doi.org/10.1145/2025113.2025188

[11] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind
Krishnamurthy. 2013. Unifying FSM-inference algorithms through declarative
specification. In ACM/IEEE International Conference on Software Engineering
(ICSE) (22–24). San Francisco, CA, USA, 252–261. https://doi.org/10.1109/ICSE.
2013.6606571

[12] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and
Arvind Krishnamurthy. 2015. Using declarative specification to improve the
understanding, extensibility, and comparison of model-inference algorithms.
IEEE Transactions on Software Engineering (TSE) 41, 4 (April 2015), 408–428.
https://doi.org/10.1109/TSE.2014.2369047

[13] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishnamurthy, and
Thomas E. Anderson. 2011. Mining temporal invariants from partially ordered
logs. ACM SIGOPS Operating Systems Review 45, 3 (Dec. 2011), 39–46. https:
//doi.org/10.1145/2094091.2094101

[14] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In European Software Engineering Conference and ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (ESEC/FSE)
(5–9). Szeged, Hungary, 267–277. https://doi.org/10.1145/2025113.2025151

[15] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In International Symposium on Software
Testing and Analysis (ISSTA). Amsterdam, Netherlands, 242–253. https://doi.org/
10.1145/3213846.3213872

[16] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In IEEE Symposium on Security and
Privacy (S&P). San Jose, CA, USA, 114–129. https://doi.org/10.1109/SP.2014.15

[17] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT
solvers. In International Workshop on Satisfiability Modulo Theories (SMT). Mon-
treal, QC, Canada, 1–5. https://doi.org/10.1145/1670412.1670413

[18] José Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. 2013. Entropy-
based test generation for improved fault localization. In IEEE/ACM International
Conference on Automated Software Engineering (ASE). Silicon Valley, CA, USA,
257–267. https://doi.org/10.1109/ASE.2013.6693085

[19] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate vali-
dation in SSL/TLS Implementations. In European Software Engineering Conference
and ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (ESEC/FSE). Bergamo, Italy, 793–804. https://doi.org/10.1145/2786805.2786835

[20] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight defect
localization for Java. In European Conference on Object Oriented Programming
(ECOOP). Glasgow, UK, 528–550. https://doi.org/10.1007/11531142_23

[21] Higor Amario de Souza, Marcos Lordello Chaim, and Fabio Kon. 2016. Spectrum-
based software fault localization: A survey of techniques, advances, and chal-
lenges. CoRR abs/1607.04347 (2016), 1–46. http://arxiv.org/abs/1607.04347

[22] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
property specifications for finite-state verification. In ACM/IEEE International
Conference on Software Engineering (ICSE). Los Angeles, CA, USA, 411–420. https:
//doi.org/10.1145/302405.302672

[23] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering (TSE) 27, 2 (2001), 99–123. https:
//doi.org/10.1145/302405.302467

[24] Robert B. Evans and Alberto Savoia. 2007. Differential testing: A new approach to
change detection. In European Software Engineering Conference and ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE) Poster
track. Dubrovnik, Croatia, 549–552. https://doi.org/10.1145/1295014.1295038

[25] Laura Faulkner. 2003. Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instruments, &
Computers 35, 3 (2003), 379–383. https://doi.org/10.3758/BF03195514

[26] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering (TSE) 39, 2 (February 2013), 276–291. https:
//doi.org/10.1109/TSE.2012.14

[27] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness test-
ing: Testing software for discrimination. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE) (6–8). Paderborn, Germany, 498–510. https:
//doi.org/10.1145/3106237.3106277

[28] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. 2014.
Mining behavior models from user-intensive web applications. In ACM/IEEE
International Conference on Software Engineering (ICSE). Hyderabad, India, 277–
287. https://doi.org/10.1145/2568225.2568234

[29] Patrice Godefroid. 2007. Random testing for security: Blackbox vs. whitebox
fuzzing. In International Workshop on Random Testing (RT). Minneapolis, MN,
USA, 1. https://doi.org/10.1145/1292414.1292416

[30] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
whitebox fuzz testing. In Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA, 151–166.

[31] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In International Sympo-
sium on Software Testing and Analysis (ISSTA). Saarbrücken, Genmany, 213–224.
https://doi.org/10.1145/2931037.2931061

[32] Dan Hao, Ying Pan, Lu Zhang, Wei Zhao, Hong Mei, and Jiasu Sun. 2005. A
similarity-aware approach to testing based fault localization. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). Long Beach, CA,
USA, 291–294. https://doi.org/10.1145/1101908.1101953

[33] Dan Hao, Lu Zhang, Hao Zhong, Hong Mei, and Jiasu Sun. 2005. Eliminating
harmful redundancy for testing-based fault localization using test suite reduction:
An experimental study. In IEEE International Conference on Software Maintenance
(ICSM). Budapest, Hungary, 683–686. https://doi.org/10.1109/ICSM.2005.43

[34] Ralf Hildebrandt and Andreas Zeller. 2000. Simplifying failure-inducing input. In
International Symposium on Software Testing and Analysis (ISSTA). Portland, OR,
USA, 135–145. https://doi.org/10.1145/347324.348938

[35] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In USENIX Security Symposium. Bellevue, WA, USA, 445–458.

[36] InTrace 2018. InTrace. https://mchr3k.github.io/org.intrace/.
[37] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing field failures for in-

house debugging. In ACM/IEEE International Conference on Software Engineering
(ICSE). Zurich, Switzerland, 474–484. https://doi.org/10.1109/ICSE.2012.6227168

[38] Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated behavioral regression
testing. In International Conference on Software Testing, Verification, and Validation
(ICST). Paris, France, 137–146. https://doi.org/10.1109/ICST.2010.64

[39] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emer-
son Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A cross-tool
communication study on program analysis tool notifications. In ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). Seattle,
WA, USA, 73–84. https://doi.org/10.1145/2950290.2950304

[40] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs? In

http://lcamtuf.coredump.cx/afl/
https://arxiv.org/abs/1809.03260
https://doi.org/10.1109/ISSRE.1995.497652
https://doi.org/10.1109/ISSRE.1995.497652
https://doi.org/10.1145/3236024.3264590
https://doi.org/10.1007/978-3-642-01702-5_13
https://doi.org/10.1007/978-3-642-01702-5_13
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1145/1831708.1831717
https://doi.org/10.1145/1831708.1831717
https://doi.org/10.1145/2025113.2025136
https://doi.org/10.1109/ICSME.2016.63
https://doi.org/10.1109/ICSME.2016.63
https://doi.org/10.1145/2025113.2025188
https://doi.org/10.1109/ICSE.2013.6606571
https://doi.org/10.1109/ICSE.2013.6606571
https://doi.org/10.1109/TSE.2014.2369047
https://doi.org/10.1145/2094091.2094101
https://doi.org/10.1145/2094091.2094101
https://doi.org/10.1145/2025113.2025151
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1109/SP.2014.15
https://doi.org/10.1145/1670412.1670413
https://doi.org/10.1109/ASE.2013.6693085
https://doi.org/10.1145/2786805.2786835
https://doi.org/10.1007/11531142_23
http://arxiv.org/abs/1607.04347
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/1295014.1295038
https://doi.org/10.3758/BF03195514
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/2568225.2568234
https://doi.org/10.1145/1292414.1292416
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.1145/1101908.1101953
https://doi.org/10.1109/ICSM.2005.43
https://doi.org/10.1145/347324.348938
https://mchr3k.github.io/org.intrace/
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1109/ICST.2010.64
https://doi.org/10.1145/2950290.2950304

Causal Testing: Understanding Defects’ Root Causes ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Proceedings of the 2013 International Conference on Software Engineering. San
Fransisco, CA, USA, 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[41] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In International Conference on Software
Engineering (ICSE). Orlando, FL, USA, 467–477. https://doi.org/10.1145/581339.
581397

[42] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis,
and Tadayoshi Kohno. 2008. Privacy oracle: A system for finding application
leaks with black box differential testing. In ACM Conference on Computer and
Communications Security (CCS). Alexandria, VA, USA, 279–288. https://doi.org/
10.1145/1455770.1455806

[43] René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In International Symposium on Software Testing and Analysis
(ISSTA). San Jose, CA, USA, 433–436. https://doi.org/10.1145/2610384.2628053

[44] René Just, Michael D. Ernst, and Gordon Fraser. 2014. Efficient mutation anal-
ysis by propagating and partitioning infected execution states. In International
Symposium on Software Testing and Analysis (ISSTA). San Jose, CA, USA, 315–326.
https://doi.org/10.1145/2610384.2610388

[45] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA). San
Jose, CA, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[46] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic mining of specifi-
cations from invocation traces and method invariants. In ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE) (16–22). Hong
Kong, China, 178–189. https://doi.org/10.1145/2635868.2635890

[47] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software Engineering
33, 1 (January 2007), 2–13. https://doi.org/10.1109/TSE.2007.10

[48] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayş Bener.
2010. Defect prediction from static code features: Current results, limitations,
new approaches. Automated Software Engineering 17, 4 (May 2010), 375–407.
https://doi.org/10.1007/s10515-010-0069-5

[49] Manish Motwani and Yuriy Brun. 2019. Automatically generating precise oracles
from structured natural language specifications. In ACM/IEEE International Con-
ference on Software Engineering (ICSE) (29–31). Montreal, QC, Canada, 188–199.
https://doi.org/10.1109/ICSE.2019.00035

[50] Kıvanç Muşlu, Yuriy Brun, Michael D. Ernst, and David Notkin. 2015. Reducing
feedback delay of software development tools via continuous analyses. IEEE
Transactions on Software Engineering (TSE) 41, 8 (August 2015), 745–763. https:
//doi.org/10.1109/TSE.2015.2417161

[51] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2013. Data debugging
with continuous testing. In European Software Engineering Conference and ACM
SIGSOFT International Symposium on Foundations of Software Engineering (ES-
EC/FSE) New Ideas track (18–26). Saint Petersburg, Russia, 631–634. https:
//doi.org/10.1145/2491411.2494580

[52] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2015. Preventing data errors
with continuous testing. In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA) (12–17). Baltimore, MD, USA, 373–384. https:
//doi.org/10.1145/2771783.2771792

[53] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart,
Ivan Beschastnikh, and Yuriy Brun. 2014. Behavioral resource-aware model infer-
ence. In IEEE/ACM International Conference on Automated Software Engineering
(ASE) (15–19). Västerås, Sweden, 19–30. https://doi.org/10.1145/2642937.2642988

[54] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). Newport Beach, CA, USA, 241–252.
https://doi.org/10.1145/1029894.1029928

[55] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed random
testing for Java. In Conference on Object-oriented Programming Systems and Ap-
plications (OOPSLA). Montreal, QC, Canada, 815–816. https://doi.org/10.1145/
1297846.1297902

[56] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers? In International Symposium on Software Testing
and Analysis (ISSTA). Toronto, ON, Canada, 199–209. https://doi.org/10.1145/
2001420.2001445

[57] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Au-
tomated whitebox testing of deep learning systems. In ACM Symposium on
Operating Systems Principles (SOSP). Shanghai, China, 1–18. https://doi.org/10.
1145/3132747.3132785

[58] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2012. Darwin:
An approach to debugging evolving programs. ACM Transactions on Software
Engineering and Methodology (TOSEM) 21, 3 (2012), 19:1–19:29. https://doi.org/
10.1145/2211616.2211622

[59] Cynthia K. Riemenschneider, Bill C. Hardgrave, and Fred D. Davis. 2002. Ex-
plaining software developer acceptance of methodologies: A comparison of five
theoretical models. IEEE Transactions on Software Engineering (TSE) 28, 12 (2002),
1135–1145. https://doi.org/10.1109/TSE.2002.1158287

[60] Jeremias Rößler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. 2012.
Isolating failure causes through test case generation. In International Symposium
on Software Testing and Analysis (ISSTA). Minneapolis, MN, USA, 309–319. https:
//doi.org/10.1145/2338965.2336790

[61] Vipin Samar and Sangeeta Patni. 2017. Differential testing for variational analyses:
Experience from developing KConfigReader. CoRR abs/1706.09357 (2017), 1–18.
http://arxiv.org/abs/1706.09357

[62] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions developers ask while diagnosing
potential security vulnerabilities with static analysis. In European Software
Engineering Conference and ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (ESEC/FSE). Bergamo, Italy, 248–259. https:
//doi.org/10.1145/2786805.2786812

[63] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly Shmatikov.
2011. A security policy oracle: Detecting security holes using multiple API
implementations. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). San Jose, CA, USA, 343–354. https://doi.org/10.1145/
1993498.1993539

[64] Roykrong Sukkerd, Ivan Beschastnikh, Jochen Wuttke, Sai Zhang, and Yuriy
Brun. 2013. Understanding regression failures through test-passing and test-
failing code changes. In International Conference on Software Engineering New
Ideas and Emerging Results Track (ICSE NIER) (22–24). San Francisco, CA, USA,
1177–1180. https://doi.org/10.1109/ICSE.2013.6606672

[65] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc comments to detect comment-code inconsistencies. In
International Conference on Software Testing, Verification, and Validation (ICST).
Montreal, QC, Canada, 260–269. https://doi.org/10.1109/ICST.2012.106

[66] Yuchi Tianand, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest:
Automated testing of deep-neural-network-driven autonomous cars. InACM/IEEE
International Conference on Software Engineering (ICSE). Gothenburg, Sweden,
303–314. https://doi.org/10.1145/3180155.3180220

[67] Robert J. Walls, Yuriy Brun, Marc Liberatore, and Brian Neil Levine. 2015. Dis-
covering specification violations in networked software systems. In International
Symposium on Software Reliability Engineering (ISSRE) (2–5). Gaithersburg, MD,
USA, 496–506. https://doi.org/10.1109/ISSRE.2015.7381842

[68] Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and
Milos Gligoric. 2018. Towards refactoring-aware regression test selection. In
ACM/IEEE International Conference on Software Engineering (ICSE). Gothenburg,
Sweden, 233–244. https://doi.org/10.1145/3180155.3180254

[69] Qianqian Wang, Yuriy Brun, and Alessandro Orso. 2017. Behavioral execution
comparison: Are tests representative of field behavior? In International Conference
on Software Testing, Verification, and Validation (ICST) (13–18). Tokyo, Japan, 321–
332. https://doi.org/10.1109/ICST.2017.36

[70] W. Eric Wong, Vidroha Debroy, and Byoungju Choi. 2010. A family of code
coverage-based heuristics for effective fault localization. Journal of Systems and
Software (JSS) 83, 2 (2010), 188–208. https://doi.org/10.1016/j.jss.2009.09.037

[71] James Woodward. 2005. Making things happen: A theory of causal explanation.
Oxford University Press.

[72] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). San Jose, CA, USA, 283–294.
https://doi.org/10.1145/1993498.1993532

[73] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
In European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). Toulouse, France, 253–267.
https://doi.org/10.1145/318773.318946

[74] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (February 2002),
183–200. https://doi.org/10.1109/32.988498

[75] Daniele Zuddas, Wei Jin, Fabrizio Pastore, Leonardo Mariani, and Alessandro
Orso. 2014. MIMIC: Locating and understanding bugs by analyzing mimicked
executions. In ACM/IEEE International Conference on Software Engineering (ICSE).
Hyderabad, India, 815–826. https://doi.org/10.1145/2642937.2643014

https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/1455770.1455806
https://doi.org/10.1145/1455770.1455806
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2610384.2610388
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.1109/TSE.2007.10
https://doi.org/10.1007/s10515-010-0069-5
https://doi.org/10.1109/ICSE.2019.00035
https://doi.org/10.1109/TSE.2015.2417161
https://doi.org/10.1109/TSE.2015.2417161
https://doi.org/10.1145/2491411.2494580
https://doi.org/10.1145/2491411.2494580
https://doi.org/10.1145/2771783.2771792
https://doi.org/10.1145/2771783.2771792
https://doi.org/10.1145/2642937.2642988
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/2211616.2211622
https://doi.org/10.1145/2211616.2211622
https://doi.org/10.1109/TSE.2002.1158287
https://doi.org/10.1145/2338965.2336790
https://doi.org/10.1145/2338965.2336790
http://arxiv.org/abs/1706.09357
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1145/1993498.1993539
https://doi.org/10.1145/1993498.1993539
https://doi.org/10.1109/ICSE.2013.6606672
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/ISSRE.2015.7381842
https://doi.org/10.1145/3180155.3180254
https://doi.org/10.1109/ICST.2017.36
https://doi.org/10.1016/j.jss.2009.09.037
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/318773.318946
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/2642937.2643014

